
GraphIPC

Non-Linear Process Communication

Applied to Computational Linguistics Workflows

John Edward Vidler MSci.

School of Computing and Communications

Lancaster University

c© 2020

John Edward Vidler

ALL RIGHTS RESERVED

i

Abstract

Sequential operations are core to the operation of the modern computer system;

a situation not unfamiliar to any computational linguist is where sequential sub-

operations are performed to transform data input into meaningful information.

While the hardware available to the researcher has increased in capability and

complexity greatly since its inception, the tools and systems available to manage

and control this hardware has changed relatively little.

Years of legacy applications and systems may have further pushed newer sys-

tems to continue the linear nature of the communication structures available for

either familiarity, or backwards compatibility.

With the advent of GPU computing and the continual increase in processor

core count (both real and virtual) there is a pressing need to reexamine how these

resources can be better utilised, before subsequent innovations in both hardware

and software end up ‘pigeon-holed’ by the current mechanisms.

High-level applications have taken the normal interaction methods and redefined

their action through the use of middleware frameworks and similar software solutions

to present a different abstraction. This can most clearly be seen in the prevalence of

star, grid and mesh networks for high performance and distributed computing.

Taking what has been learned from these disciplines, here I present a design and

proof-of-concept implementation for addressing and communicating with multiple

processes, allowing graph form inter-process messaging in Linux.

As the industry is currently focused on natural language processing for interaction

and data analysis, I run test workloads from this set to evaluate the utility and options

therein using this approach.

ii

Declaration

I declare that this thesis is my own work and that it has not been submitted in substantially the

same form for the award of a higher degree elsewhere.

The following publications have been used wholly or in part as part of this thesis, and are

the author’s original work:

• John Vidler et al. “Dealing With Big Data Outside Of The Cloud: GPU Accelerated Sort”.

In: Challenges in the Management of Large Corpora. CMLC-2. Reykjavik, 2014, p. 21.

URL: http://www.lrec-conf.org/proceedings/lrec2014/workshops/LREC2014Workshop-

CMLC2Proceedings-rev2.pdf

• John Vidler and Stephen Wattam. “Keeping Properties with the Data CL-MetaHeaders-

An Open Specification”. In: CMLC-5+BigNLP (2017). URL: https://ids-pub.bsz-bw.de/

frontdoor/index/index/docId/6243

John Edward Vidler

MSci. Computer Science

1st July 2024

iii

http://www.lrec-conf.org/proceedings/lrec2014/workshops/LREC2014Workshop-CMLC2 Proceedings-rev2.pdf
http://www.lrec-conf.org/proceedings/lrec2014/workshops/LREC2014Workshop-CMLC2 Proceedings-rev2.pdf
https://ids-pub.bsz-bw.de/frontdoor/index/index/docId/6243
https://ids-pub.bsz-bw.de/frontdoor/index/index/docId/6243

To my wife, Elizabeth, who for some reason stuck with me for 7 years of PhD research.

Also to my unborn daughter, whom I look forward to getting to know.

iv

Acknowledgements

I would like to express my gratitude for all the help, suggestions and support from Paul Rayson

and Andrew Scott; my supervisors for this work. Without their help and guidance throughout, I

would never have finished it. I would also like to mention Utz Roedig, for his support in honing

the latter stages of the project.

Thank you to my friends; Stephen Wattam, John Hardy, Carl Ellis, Christopher Bull and

Martin Bor for their encouragement, support, jibes and competition both implied and explicit

throughout.

Thank you to everyone at the School of Computing and Communications, throughout the

years for being there to talk over coffee, bemoan the world and to offer a sympathetic ear; there

are far too many of you to name, but know that you all are appreciated.

Finally thank you to my parents, for giving me the confidence to start this journey, and the

support to keep me going.

Thank You All.

John Vidler

Lancaster, February 2020

v

Terminology

Connectome A connectome or node-edge graph, consists of a series of nodes, nor-

mally represented as points, connected together with edges represented

as lines. See also graph

Continuous Flow Data flows in which each message is dependant in some way on the

timing, or order of the messages. These flows must be processed in-

order and separately unless the data itself encodes the order therein.

Data Flow A sequence of packets along a given connection

Discrete Flow Data flows in which each message, or packet is processed individually,

without information from any other. These flows can be processed with

interleaved data

Edge A single connection between nodes in a node-edge graph, see also con-

nectome

Graph A connectome or node-edge graph, consists of a series of nodes, nor-

mally represented as points, connected together with edges represented

as lines

Node A single point in a node-edge graph, see also connectome

Client A device or process where the primary mode of interconnection is out-

bound - connecting to servers or other clients

Mangle A data and packet term relating to the meta-data having been mutated. A

mangled packet might have its destination address altered, for example.

Also see unmangle

P2P See Peer-to-Peer

Peer-to-Peer A method of interconnection whereby each device or process behaves

both as a server and a client, allowing both inbound and outbound con-

nections to be made.

vi

Router A device or process responsible for storing and forwarding messages

sent to it along assorted connections associated with it. Frequently also

performs some filtering or path-decision logic as part of this operation

Server A device or process where the primary mode of interconnection is in-

bound - connections are made from other devices or processes.

Unmangle A data and packet term relating to cases where the meta-data associated

with a given payload is preserved unchanged. Also see mangle

Compute Device Generally a processor of some kind, executing code, but also includes

any device performing one or more functions on data, such as a dedic-

ated packet processing chip.

Load Surface A dynamic, multi-dimensional space in which each axis represents one

constraint under which a compute device, or collection of compute devices

operates. The surface is likely manifold, but may not be if there are

unknown factors.

SoC System-on-Chip; multiple units, which would traditionally have been dis-

tinct components on a PCB, integrated onto a single die via VLSI tech-

niques

VLSI Very-Large-Scale Integration; the process by which millions of distinct

transistors are combined to form a single chip via (usually) photolitho-

graphy.

vii

Publications

Dealing With Big Data Outside Of The Cloud: GPU Accelerated Sort

Influences This paper demonstrated the utility of using many small processors to execute

complex workloads, even if the individual processes were generally considered sub-optimal; ef-

fectively a ‘many processors make light work‘ solution space. This design, and the discussions it

generated lead directly to looking at ways of building systems to support this kind of processing,

and ultimately GraphIPC itself.

Full Citation John Vidler et al. “Dealing With Big Data Outside Of The Cloud: GPU Acceler-

ated Sort”. In: Challenges in the Management of Large Corpora. CMLC-2. Reykjavik, 2014,

p. 21. URL: http://www.lrec-conf.org/proceedings/lrec2014/workshops/LREC2014Workshop-

CMLC2Proceedings-rev2.pdf

Keeping Properties with the Data CL-MetaHeaders - An Open

Specification

Influences In the paper we describe a scheme for encoding the properties of corpus data for

either storage or transfer; this used characteristics of the existing formats to provide a robust

way for reading processes to determine the type of data held therein. Discussions spawned

from this work influenced my thoughts around the general interoperability of the tools being

used, and heavily influenced the overall philosophy of GraphIPC.

Full Citation John Vidler and Stephen Wattam. “Keeping Properties with the Data CL-MetaHeaders-

An Open Specification”. In: CMLC-5+BigNLP (2017). URL: https://ids-pub.bsz-bw.de/frontdoor/

index/index/docId/6243

LoRa for the Internet of Things

Influences In this paper, the exploration of light-weight protocols influenced the general pro-

tocol design for GraphIPC.

viii

http://www.lrec-conf.org/proceedings/lrec2014/workshops/LREC2014Workshop-CMLC2 Proceedings-rev2.pdf
http://www.lrec-conf.org/proceedings/lrec2014/workshops/LREC2014Workshop-CMLC2 Proceedings-rev2.pdf
https://ids-pub.bsz-bw.de/frontdoor/index/index/docId/6243
https://ids-pub.bsz-bw.de/frontdoor/index/index/docId/6243

Full Citation Martin Bor, John Edward Vidler and Utz Roedig. “LoRa for the Internet of

Things”. In: 16 (2016), pp. 361–366. URL: https://www.researchgate.net/profile/John Vidler2/

publication / 297731094 LoRa for the Internet of Things / links / 56e1893e08ae4bb9771ba9e3 /

LoRa-for-the-Internet-of-Things.pdf

It Bends but Would it Break? Topological Analysis of BGP Infrastructures

in Europe

Influences In this work, we examined the large-scale internet infrastructure in the UK internet.

The analysis of this network lead to more investigation in general around how interconnected

systems behaved, and where the critical points were.

Full Citation Sylvain Frey et al. “It Bends but Would it Break? Topological Analysis of BGP

Infrastructures in Europe”. In: 2016 IEEE European Symposium on Security and Privacy

(EuroS&P). IEEE. 2016, pp. 423–438. URL: https://eprints.soton.ac.uk/412811/1/EuroSnP.pdf

Shapeclip: Towards rapid prototyping with shape-changing displays for

designers

Influences My contributions to this project were centered around the communications pro-

tocols and methods used to control the devices. As this used a display and light-dependent

resistors to realise this channel, the bandwidth available was extremely small, leading me to

investigate lightweight protocols and communication designs, which would later effect my work

on the protocol for GraphIPC.

Full Citation John Hardy et al. “Shapeclip: towards rapid prototyping with shape-changing

displays for designers”. In: Proceedings of the 33rd Annual ACM Conference on Human Factors

in Computing Systems. ACM. 2015, pp. 19–28

ix

https://www.researchgate.net/profile/John_Vidler2/publication/297731094_LoRa_for_the_Internet_of_Things/links/56e1893e08ae4bb9771ba9e3/LoRa-for-the-Internet-of-Things.pdf
https://www.researchgate.net/profile/John_Vidler2/publication/297731094_LoRa_for_the_Internet_of_Things/links/56e1893e08ae4bb9771ba9e3/LoRa-for-the-Internet-of-Things.pdf
https://www.researchgate.net/profile/John_Vidler2/publication/297731094_LoRa_for_the_Internet_of_Things/links/56e1893e08ae4bb9771ba9e3/LoRa-for-the-Internet-of-Things.pdf
https://eprints.soton.ac.uk/412811/1/EuroSnP.pdf

Contents

Abstract ii

Declaration iii

Acknowledgements v

Terminology vi

Publications viii

Dealing With Big Data Outside Of The Cloud: GPU Accelerated Sort viii

Keeping Properties with the Data CL-MetaHeaders - An Open Specification viii

LoRa for the Internet of Things . viii

It Bends but Would it Break? Topological Analysis of BGP Infrastructures in Europe . ix

Shapeclip: Towards rapid prototyping with shape-changing displays for designers . . . ix

Contents x

1 Introduction 1

1.1 The Change . 1

1.2 Networks, External and Internal . 2

1.3 Users and Usage . 3

1.4 Operating Systems and Resources . 3

1.5 Research Questions . 4

1.6 Structure of this Thesis . 4

2 Related Work 7

2.1 The GATE Toolkit . 7

2.2 Use Cases . 8

2.2.1 Modular NLP Tools . 9

2.2.2 Build and Workflow Systems . 9

2.3 Middleware . 10

2.4 Hardware Improvements . 12

x

0: Publications

2.5 Changes in the Platform . 13

2.5.1 Zero-copy Processing . 14

2.6 Asymmetric Multiprocessing . 15

2.7 Networking . 16

2.7.1 Network Representation . 16

2.7.2 Hybrids and Overlays . 17

2.7.3 Flow Marshalling . 17

2.8 Scaling and Migration . 17

2.9 Security . 18

2.10 Small Devices and IoT Networks . 18

2.11 Management . 19

2.12 Kernel Design . 19

2.12.1 The ‘Tesselation’ Design . 20

2.12.2 The ‘Exokernel’ Design . 22

2.12.3 Implementation - Barrelfish . 23

2.12.4 Implementation - Corey . 26

2.12.5 Implementation - Fabric . 27

2.12.6 Implementation - Helios . 29

2.13 Summary . 31

3 Analysis 34

3.1 Automation and Flow . 34

3.2 Connectivity . 35

3.2.1 Linear Chains to Graphs . 35

3.2.2 Practicalities . 38

3.3 Technical Challenges . 38

3.3.1 Directionality and Buffering . 38

3.3.2 External Buffers and System Buffers . 40

3.3.3 Multipath IPC . 41

3.3.4 Lock-Free Data Structures . 42

3.3.5 Summary . 45

3.4 Map and Reduce . 45

3.5 GPU Case Study - GPU Sort . 48

3.5.1 Issues with GPU Hardware . 49

3.5.2 Expermiental Methodology . 50

3.5.3 Results . 52

3.5.4 Discussion and Conclusions . 53

xi

0: Publications

3.6 CPU Bugs - Meltdown and Spectre . 54

3.7 Summary . 55

4 Design 57

4.1 Outline . 57

4.2 Design Concepts . 58

4.2.1 Asymmetric Network Links . 58

4.2.2 Unidirectional Network Links . 59

4.3 Architecture . 60

4.3.1 Stream-based approaches to Data flows 60

4.3.2 Router . 60

4.3.3 Nodes . 60

4.4 Interaction with other Linux Processes . 61

4.4.1 Tool Interoperability . 61

4.4.2 Structured vs. Unstructured Data . 62

4.5 Interactions . 62

4.5.1 Bus . 63

4.5.2 Map . 64

4.5.3 Reduce . 65

4.5.4 Mux (or ‘Multiplex’) . 65

4.5.5 DeMux (or ‘Demultiplex’) . 66

4.6 Address Range . 66

4.6.1 CIDR Compatible Notation . 67

4.7 Summary . 67

5 Implementation 70

5.1 Overall Architecture . 70

5.2 The ‘Router’ . 71

5.2.1 Routers All The Way Down . 72

5.2.2 ‘Nodes’ and Binary Wrappers . 73

5.3 Networking . 77

5.3.1 Asynchronous Messaging . 77

5.3.2 Protocol . 78

5.3.3 Address Lookup Mechanisms . 79

5.3.4 Forwarding and Policies . 83

5.4 Binaries . 85

5.4.1 GraphRouter . 85

5.4.2 Graph . 86

xii

0: Publications

5.5 Summary and Future Developments . 87

6 Evaluation 90

6.1 Test Machine Configuration . 90

6.2 General Methodology . 90

6.3 Throughput Limits . 91

6.4 Custom Tooling . 91

6.4.1 ArgTest . 91

6.4.2 pv from pv4science . 92

6.5 Standard Linux Pipes . 93

6.6 Local Sockets . 94

6.7 Forwarding Policies . 95

6.7.1 Broadcast . 96

6.7.2 AnyCast . 97

6.7.3 RoundRobin . 98

6.8 Runtime Operation . 100

6.8.1 ‘Bus’ Operations . 100

6.8.2 Flow Map and Reduce . 102

6.9 Limitations and Extensions . 104

6.9.1 Build System Integration . 104

6.9.2 Transport Layer . 104

6.9.3 Multiple Host or Nested Hosting . 105

6.10 Summary . 105

7 Conclusion 107

7.1 Novelty . 108

7.2 Utility . 108

7.3 Significant Contributions . 109

7.4 Limitations and Further Work . 110

7.4.1 Building as a Kernel Module . 110

7.4.2 Networking and Protocol . 110

7.4.3 Integration With a Zero-Copy Framework 111

7.4.4 Remote Host and Nested Router Support 111

7.4.5 Workflow Tool Integration . 111

8 Bibliography 114

A List of Figures 120

xiii

0: Publications

B Data Tables 126

B.1 Hardware Specification of Test Environment . 126

B.2 Unix Pipe Transfer Speeds for Increasing Payload Length 132

B.3 Broadcast Policy Throughput . 183

B.4 RoundRobin Policy Throughput . 187

B.5 Anycast Policy Throughput . 195

xiv

Chapter 1

Introduction

With the ever increasing complexities of analysis and processing techniques available for re-

search (and other) purposes, the limitations of existing models of communication between

applications are becoming clear. Rather than address these through radical restructuring of

the entire operating system, as has been posited previously, the design and prototype outlined

and developed here describes a complementary system, which may be included alongside

completely standard systems as well as potentially being embedded as part of the system itself

(with some advantages therein).

As will be discussed in the subsequent chapters of this thesis; fundamentally, the defining

component of the modern application or process is that of communication. Without good internal

and external communication infrastructure, there will always be a limit to the complexity - and

thus utility - of the applications that can be described.

Communications is key in the efficient machinations of the modern system.

First, however, before the details of the design of communication systems can be covered,

some description of the changes in the very nature of computing is necessary to frame the rest

of the discussion.

1.1 The Change

Perhaps the easiest aspect of these changes to be understood is that of the hardware, as there

has been a clear increase in local compute power and memory density that has been pro-

gressing since the inception of the technology itself. This overall increase in compute capability

has generally followed Moore’s Law, although in the last few years there has been discussion

involving a “Post-Moore’s Law” state1. This increase in computing capability now presents a

new class of problem - that of being able to transfer data in and out of the processing elements

fast enough to realise their actual performance.

This has most easily been seen in the field of General-Purpose Graphics Processing Unit

1

1: Introduction Users and Usage

(GPGPU) research, where until recently, most of the techniques employed were limited by the

rate at which data in main memory (RAM) could be transferred into the graphics card memory

(or memories, in the case of linked GPU configurations). This, in conjunction with a ‘batch-mode’

general style of operation quickly lead to execution times entirely dominated by the import and

export phases.

Thanks to innovation in computer game graphics technology, this workflow is now waning -

the introduction of multiple ‘Copy Engines‘2 has greatly sped up the available throughput, but

also the addition of streaming techniques; whereby the data is just-in-time loaded while other

processing is underway - and dynamic execution of threads on the cards themselves can, if

employed carefully, entirely eliminate the initial data import delays.

1.2 Networks, External and Internal

With networking as the topic at hand, it is worth noting the developments in the internal and

external wiring present in the modern system.

At the outset, networking between hosts was affected by circuit-switched technologies, ef-

fectively directly linking host to host, which quite quickly presented numerous problems at

scale. These problems were largely solved by moving to a packet-switched network design,

with individual point-to-point links only going so far as the first ‘hop’ in long network paths.

The real benefit of adopting the scheme, however, was that it became a largely stateless

operation to send data between hosts; intermediate devices could merely read the data in

received packets and immediately determine the operations required - normally forwarding

along the next point-to-point link in the network towards the destination host.

The addition of routing logic to this design enabled the networks we enjoy today, with features

such as Network Address Translation (NAT), firewall rules and others defining and shaping the

boundaries of the networks each host can observe. The further additions of protocols such

as Multi-Protocol Label Switching (MPLS) and later additions to the underlying routing such as

multicast further enabled the logical grouping and marshalling of data in the networks.

The hardware upshot of this is that network routers (and other devices) are now extremely

capable computing platforms in their own right; capable of handling messages at gigabit or

greater speeds with ease[22, 23, 43, 56]. If one looks at such devices as a collection of their

capabilities, rather than just as a router, it is this author’s opinion that they must be regarded as

not dissimilar to a co-processor themselves, specialising in high-throughput stateless message

handling.

2

1: Introduction Operating Systems and Resources

1.3 Users and Usage

In hand with the changes in the platforms and networks (concepts that are increasingly difficult

to separate), the uses that computers are employed for has changed in kind.

The early mainframe-based or mainframe-styled computers attempted to meter out limited

resources to numerous jobs from a (comparatively) large number of concurrent users3 - this

is in stark contrast to the systems available today, where individual users have a plethora of

processors and vast amounts of working memory to use.

The very nature of the jobs (tasks, or processes) being asked of the computer has also

changed. Frequently, processes are not a single run-time context to be executed to a completion

state and dismissed, but are complex, interconnected networks of processes, sometimes (or

indeed, oftentimes) spanning multiple hosts, and indeed, multiple networks[14, 40, 51]. This

network oriented system view is not limited to applications requiring the use of multiple hosts

(thus spanning the ‘external’ network) but actually includes the internal network of the modern

host, with elaborate co-processor devices[50, 52] acting as smaller, yet complete hosts unto

themselves executing within the larger (and more traditionally defined) host.

Run-time requirements and dependencies of this new form of process vary with time and

environment, so are difficult to predict, sometimes leading to patterns of migration around the

system (or collection of systems), further increasing the complexity of the load surface the

compute resources are subject to.

1.4 Operating Systems and Resources

While clearly advantageous to the user, this glut of resources brings its own challenges in

managing how to use them.

Examining memory as an example, the additional working memory available to the system

means that larger working sets can be ready to go for when the processes running require

it, but conversely, the larger working sets mean that the system itself has to expend more

resources tracking, loading, and unloading them (both in terms of execution time, and that

of operational complexity). This, unfortunately, may lead to ‘stuttering’ (also known as ‘jitter’)

whereby the system itself has to pause executing user processes to perform the maintenance

tasks required to continue running the user processes. Obviously, this ‘stuttering’ is a relatively

extreme case, and thankfully rarely seen in normal execution, but lower resourced devices

running heavyweight code often see this effect, nonetheless.

The heterogeneity of the modern compute platform also proves problematic. An operating

system running on a platform with dissimilar processing elements has the the task of determin-

ing exactly where to execute the new process - a complex task considering that the trade-offs

3

1: Introduction Structure of this Thesis

between the processors may mean that they result in similar, or identical probability of their use.

Some operating systems have attempted to handle this by encoding the requirements of a

process into the code for the process itself (or the loader, preamble, or other associated meta-

data along with the binaries for the process), but even then, running the same process multiple

times immediately creates compute-resource contention problems that need further solving.

Specific examples of this being done in research applications will be discussed in Chapter

2, in which a notable kernel design approach is that of the ‘Capability System’[47].

As has already been mentioned; there have been a number of attempts to address some

or all of these problems through the complete re-engineering of the operating system itself.

This is in contrast to approaches employing libraries to mediate between the system itself and

the processes running on them - these middleware systems use knowledge specific to their

particular task niche to determine (what the library thinks is) the best execution environment for

the jobs en-queued.

Whereas the systems-based approaches have focused on the nature of the interactions at

the system level, some of the middleware frameworks have evolved to focus on the workflow of

the users operating the system. These frameworks - some of which will be explored in detail

in the next chapter - highlight the system interactions with the user and their processes, and in

particular, the requirements for communications between said processes.

But it should be noted here that these two aspects - the workflow and the operating system

itself - can no longer be considered in isolation, as network semantics reach down into the

system, and up from the hardware into the execution environment, it is paramount that the

capabilities at all levels reflect the needs of the processes being executed on them.

1.5 Research Questions

RQ1 What would a modern workload-focused approach look like for local message passing?

RQ2 What affordances are there to use the modern heterogeneous systems more effectively

for analysis tasks?

RQ3 What workflow elements are required to support large scale data and text analytical tasks?

RQ4 What of systems design attempts from the last 30 years is actually applicable or appropri-

ate for modern workloads?

1.6 Structure of this Thesis

The remainder of this document are divided into the following topics; first, the background

material in both the operating systems area and in an application space; corpus linguistics

4

1: Introduction Structure of this Thesis

(Chapter 2), then progress to define the characteristics of the space between the processes

and their interactions (Chapter 3). Beyond this, the remaining pages detail an idealised design

(Chapter 4), along with the practical implementation limitations imposed on this design by

existing hardware (Chapter 5). The prototype is then evaluated for correctness against a number

of example workflows and data collections (Chapter 6), with the results discussed in the chapter

thereafter (Chapter 7) when put against the original model.

5

1: Introduction Structure of this Thesis

Footnotes

1Moore’s Law, which states that transistor density doubles every 18 months - affecting both processing capability

and memory density - has seen the actual density beginning to deviate from the predicted density, showing a generally

decelerating trend.

2A general term for subsystems of the hardware designed to ship data from place to place, often daughter-board to

mother-board or back.

3Concurrent requests, although frequently these were handled as sequential jobs, rather than true parallel operations

due to the limitations of the hardware and operating systems of the time.

6

Chapter 2

Related Work

To understand the need for such a system as proposed and demonstrated in this document,

one must first establish two things; firstly, the nature of the processing workflow employed at the

time of writing and secondly, the nature of the systems available to execute these processes

upon.

As analysis and processing techniques have developed and improved, they have naturally

had an a corresponding increase in complexity. This complexity is manifest both in the capabil-

ities of the processes in question, and also in the interactions between the processes used.

As tools grow, there reaches a point where the tool is actually performing many separate

jobs and processing them in combinations; in an effort to reduce internal complexity of such

tools, it is often the case that they are refactored into a number of smaller, single-purpose sub-

tools, each which communicates with the next via a communication link; the specific nature of

these links will shortly be discussed at length, but may be signals, files, sockets, or any other

mechanism provided for this purpose.

2.1 The GATE Toolkit

If the reader is familiar with tooling common to the corpus linguistics (CL) and natural language

processing (NLP) fields, it is probably no surprise that at this stage there is a clear parallel with

the work of Cunningham and their GATE toolkit[12].

GATE, or the General Architecture for Text Engineering provides a combined wrapper and

dependency modelling system for NLP tools - this allows users to describe the operations they

need in a graphical, node-graph format, then have the system handle the order of operations.

Processes are executed serially in order to satisfy the requirements of subsequent opera-

tions, at which stage the next set of operations can be executed (See 2.1 for a block diagram

of GATE’s internals). GATE does this by having a declaration language for input requirements

and output productions, from which the toolkit can infer the operational order and requirements

7

2: Related Work Use Cases

Figure 2.1: The internal architecture of GATE. Of note is the
translation layers between tools. These translations can be
done automatically provided that GATE knows the nature of
the tool in question.

of each step of the graph.

This falls into the pseudo-parallelism model, a familiar concept in unicore systems develop-

ment, whereby the system gives the illusion of running concurrent processes when in reality it

simply interleaves them running one at a time - a design that will be discussed in further detail

presently in this chapter.

The only nuance from the ‘systems’ meaning of the term here is that each process is run

to completion rather than truly interleaved with sibling processes as would be the case in a

traditional preemptive multiprocessing system, for example4.

2.2 Use Cases

As part of their work on GATE, Cunningham et.al, identified 20 use cases for Language En-

gineering (LE)5 that cover every aspect of the field from the individual tool operations to the

workflows employed by users.

Many of these use cases are specific to particular language engineering operations, and

as such do not directly relate to the discussion here, but beyond the simple cases of singly

executing processes, all the use cases presented become dependant on a smaller number of

process management ones.

More specifically, the distributed processing, parallel processing, and deployment use cases

combine and impact with the remainder as the connected network of processes becomes larger.

In addition to these basic cases, a further two new use cases, reproducibility, and reuse, along

with a third; workflow should be represented here as a more general representation of user

intent, as we describe a way to define a sequence of operations as a graph-flow, rather than as

a simple sequence.

8

2: Related Work Use Cases

2.2.1 Modular NLP Tools

In addition to the work done with GATE, there are a number of tools which attempt to present

each stage of a workflow as an entirely independent tool or binary. OpenNLP6 and NLTK [6]7

are two particularly popular ones, with both offering a command-line method to access their

functionality, as well as the option to use an API to directly embed the tools into other works.

Individually, each tool presents a single operation (Tagging, sentence identification, lem-

matisation, and so forth) and generally reads an input source via the standard input stream,

reporting the results directly to the standard output stream (an example of which can be seen in

Figure 2.2). This allows the tools to be chained together into a series of operations describing

a more complete workflow, as presented in Figure 2.3.

$> opennlp POSTagger opennlp−models /en−pos−maxent .bin < testcorpus .txt
Loading POS Tagger model ... done (0.588 s)

This_DT eBook_NN is_VBZ for_IN the_DT use_NN of_IN anyone_NN anywhere_RB at_IN no_DT cost_NN and_CC with_IN
almost_RB no_DT restrictions_NNS whatsoever ._WP You_PRP may_MD copy_VB it ,_RB give_VBP it_PRP away_RB or_CC

Figure 2.2: An example of the use and initial output of
OpenNLP running the POSTagger module with a pre-trained
model.

Strangely, the individual command line tools are presented as proof of concepts rather than

the primary use case for OpenNLP, despite much - if not all - of the functionality being available.

$> opennlp POSTagger opennlp−models /en−pos−maxent .bin < testcorpus .txt | \
opennlp ChunkerME opennlp−models /en−chunker .bin

Loading POS Tagger model ... Loading Chunker model ... done (0.313 s)
done (0.604 s)
[NP This_DT eBook_NN] [VP is_VBZ] [PP for_IN] [NP the_DT use_NN] [PP of_IN] [NP anyone_NN] [ADVP

anywhere_RB] [PP at_IN] [NP no_DT cost_NN] and_CC [PP with_IN]
[ADVP almost_RB] [NP no_DT restrictions_NNS] [NP whatsoever ._WP] [NP You_PRP] [VP may_MD copy_VB] [ADVP

it ,_RB] [VP give_VBP] [NP it_PRP] [ADVP away_RB] or_CC

Figure 2.3: Chaining multiple parts of the opennlp system
together to build a more complete analysis; in this case POS
tagging followed by chunking. Note that for line-length reasons
the command has been broken out to two lines.

This separation of individual processing units is characteristic of a trend towards smaller

tools being used in conjunction to build up far more complex systems, both in the NLP space

and indeed most scientific fields.

2.2.2 Build and Workflow Systems

Snakemake[31] is also evidence of this general shift in design style. Generally used for bioin-

formatics processes, it presents a scriptable interface for running easily repeatable analysis, or

as the project describes itself:

9

2: Related Work Middleware

The Snakemake workflow management system is a tool to create reproducible and

scalable data analyses.

- Retrieved October 2019 from https://snakemake.readthedocs.io/en/stable/

Workflows are described as a series of dependent commands, with the input and outputs

of each tracked such that they can be used to determine the execution order automatically, an

example of which is included here in Figure 2.4. This is similar to GNU Make8, whereby the

states and paths of input and output files are used to build up a complete dependency graph

during the initial stages of the build. Traversing this graph is then used to generate a sequence

of commands to actually execute on the host system.

1 rule targets :
2 input :
3 " plots / dataset1 .pdf",
4 " plots / dataset2 .pdf"
5
6 rule plot:
7 input :
8 "raw /{ dataset }. csv"
9 output :

10 " plots /{ dataset }. pdf"
11 shell :
12 " somecommand { input } { output }"
13

Figure 2.4: An example of part of a Snakemake configuration,
note the rules defined by the input and output commands used
to build up the order-of-execution relationships. Taken from
https://snakemake.readthedocs.io/en/stable/, October 2019

This same graph can, in the case of Snakemake through static analysis, determine which

sections are independant of one another, and can therefore be run in parallel, producing branch-

ing paths.

Common Workflow Language (CWL)[41], LAPPS Grid[26, 27] and the Computation Flow

Orchestrator (CFO)[11] all also attempt to do this for various domains, with CWL presenting the

most general purpose approach, lending itself to no particular analysis toolset or research field

in particular.

These languages and smaller tools are complimentary to one another, provided that the

formats used are understood by each tool. Some of my own work has attempted to address this

interoperability problem in CL-MetaHeaders[53], where working towards a common format, or

common header to identify formats would help conforming programs communicate.

2.3 Middleware

The management of these large connected systems of processes is an inherently difficult task,

and as such rather than relying on the relatively primitive structures and interfaces provided by

10

https://snakemake.readthedocs.io/en/stable/
https://snakemake.readthedocs.io/en/stable/

2: Related Work Middleware

the underlying operating systems, many applications use ‘middleware’ to bridge the manage-

ment gap.

As previously mentioned, there are common workflow-oriented designs such as GATE, but

as a more general solution, projects such as Apache Hadoop[58], which comprises a complete

stack from storage through task allocation and processing distribution is probably the most well-

known.

While it is technically possible to configure a general purpose system to work as all aspects

of a Hadoop system, the difficulty in doing so along with the minimal gains mean that far more

frequently Hadoop systems work more like a cloud network than anything else; taking jobs

from external hosts and applying them to a cluster of dedicated Hadoop machines as a whole.

This does tend to push Hadoop outside the scope of general purpose computing, making it a

significantly less attractive solution overall.

While Hadoop offers a heavyweight solution, lightweight messaging systems such as Mes-

sage Queuing Telemetry Transport (MQTT)[15] have recently become fairly popular. In a similar

manner to RPC or structured message schemes, the developer is left to build the actual software

infrastructure, instead just deferring the transmission and reception of data over varied network

links to the messaging layer.

A departure from middleware designs in the traditional sense, MQTT (and similar protocols)

do not have a central authority dictating the dispatch of jobs, but rather have a singular location

through which messages are ‘published’, normally as a key/value tuple - although the value need

not be a singular data value, but can often be complex data9. Clients interested in receiving the

data published can ‘subscribe’ via the key, usually via some kind of filtering system, and receive

messages sent to the server (or message broker).

This is of particular interest, as the model presented to the clients is that of one which

approximates a network router - the point-to-point communication done via TCP/IP (in most

cases, although reliable UDP schemes do exist) and the packet store-and-forward schemes

handled in the middleware ‘routing’ layer.

While lightweight, protocols such as this are just that - protocols. They provide the building

blocks for the rest of a middleware system, but still rely on the system layers themselves to do

the actual message transport, resulting in network overlay schemes.

While not directly ‘bad’ per se. having the semantics of the network in higher layers precludes

the system from doing beneficial things to the network messages ‘in flight’ - broadcasts become

multiple unicast messages, for example, requiring multiple copies of the same message to be

sent as distinct entities, effectively ruining the minimalist goals of the system-level transport

layer.

11

2: Related Work Changes in the Platform

To fully understand the behaviour of the system, and how it can be altered to manage

different interactions, it is necessary to focus next on attempts to deviate from the standard

models of multiprocessing and communications found in all contemporary operating systems.

2.4 Hardware Improvements

It is worth starting with the improvements that have been made to computing hardware, as

fundamentally, the design decisions made at this level will tend to mould the higher layers into

similar forms.

In recent history, the number of discrete processing-elements available per host has in-

creased dramatically, taking individual computers from single core processors to 56, or more,

cores in high-end multi-die server configurations10, and typically very capable coprocessors

integrated as well. Beyond the base configurations of these hosts, discrete coprocessors such

as GPUs become common, and the number of processing elements they contain increases

exponentially with increasing cost.

Moore’s Law predicted the doubling of transistor density approximately every two years,

which corresponds to an increase in processor capability each time. The 45 nanometer (45nm)

lithography process, along with the 32 nanometer process brings component size down to

scales where quantum effects start to become more apparent between individual signal lines

causing internal interference in the processor itself, effectively putting a limit on the possible

improvements in available compute resource based on the size of the silicon and its ability to

dissipate heat.

With the central processor beginning to trail off in performance at 8 cores (9 in some special-

ist processors), attention has drifted to GPUs, where the chips in GPUs allow the integration of

processor core counts in the hundreds, if not thousands (The nVidia P100 GPU Accelerator11

has 3584 Cuda R© cores, for example).

Alongside this progressive increase in local computing power networking capabilities have

also improved. Even Small Office Home Office (SoHo) routers are capable of gigabit throughput

rates and real-time packet filtering, and support for IPv6 is now common on local networks.

In combination with increased processing capability and faster interconnects, there have

also been incredible advances made in memory density. Low-cost computers now routinely

contain multi-gigabyte RAM arrangements (often also with expansion available for more), and

easily over 100 GB of long-term storage, even in those using solid state disks (SSDs).

12

2: Related Work Changes in the Platform

Figure 2.5: The PCI bus verses the PCIe network

2.5 Changes in the Platform

PC interconnects appear to be progressing along the same technology sequence as data tele-

coms networks have already traversed. Pre-PCI and traditional PCI/PCI-X systems used bus

network configurations, relying on the receiver electronics to determine if the data in question

was intended for that device - effectively a broadcast-always system.

Beyond PCI/PCI-X, with the creation of PCIe, the topology has been radically altered to

a circuit switched network of bidirectional pairs transmitting serial data. Routing in this new

environment is achieved by intermediate switches selecting which connection to forward via as

the data passes through them. This moves the intelligence off the individual devices and on to

the motherboard and its controllers.

In Figure 2.5 the two architectures are represented side-by-side, and the changes can be

seen. The new architecture, as shown on the right, bears striking resemblance to an Ethernet

switched network, with switch fabric between the devices to enable momentary direct, physical

connections along specific paths, eliminating collision issues inherent with bus-type connection

schemes.

In this form, connections between transmitter/receiver pairs are made by physical connec-

tions allowing wire-speed transfer beyond the initial route-forming transmission. The limiting

factor becomes the upper bound transfer rate of the communication chips in the devices, much

like the dial-up telephone communication network, where throughput was (and indeed, still is)

limited by the clients, rather than the network itself.

One important feature of PCIe should not be overlooked; devices are not limited to a single

network channel. 1, 2, 4, 8 or 16 channels are supported by the physical layers currently

available, but the actual upper bound on this number is dictated by the hardware vendors, rather

than the specification itself. Indeed, in the cases where multiple devices are further connected

out-of-band with PCIe, such as the case for high-performance video cards, 32 concurrent

13

2: Related Work Changes in the Platform

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Byte +0 R1 Format Type R2 TC R3
Byte +2 TD EP Attr R4 Length
Byte +4 Requester ID
Byte +6 Tag (Unused) Last BE First BE
Byte +8 Address ...

Byte +10 ... Address cont.d R5
Byte +12 Data DW 0 ...
Byte +14 ... Data DW 0 cont.d

Figure 2.6: The data structure of a PCIe ‘network’ packet

physical connections are possible (More in the case of Crossfire boards by ATI/AMD, which

with 3 cards could reach 48 serial connections).

The move to this network arrangement has also meant that the data flow behaves in a much

more TCP-like manner. Connections have a life cycle; setup, transfer and tear-down stages

all have overheads associated. In the setup phase, the physical route to the destination is

constructed. Switches along the path build links attempting to avoid congested paths in a very

MPLS-like manner. With a path set up, the data can be freely transferred between the endpoints

without fear of congestion, contention or collision, and can be likened to the established session

phase of TCP.

The patterns of serial links between endpoints is repeated throughout the modern system

to span networks beyond the single host, and further out yet to organisational layers around

host-groupings.

Following this technology progression we might expect the next stage to be a move from

circuit switched networking to packet switched networking. However, a move like this would

require significant performance improvements for the network switches with very little actual

gain in terms of overall system performance - assuming a system in a similar form to those we

see today - something which is unlikely to be made, as manufacturers will be resistant to this

kind of change.

The similarities with Ethernet and other switched network architectures are continued to

the data transmitted, with PCIe messages formatted in a very similar way to macro-network12

messages.

The basic frame structure is shown in Figure 2.6, but is extended by additional data as

required by the specific task in operation, exactly how higher-level network protocols, such as

TCP, extend their lower-level counterparts, such as IP (and indeed IP to Ethernet frames).

2.5.1 Zero-copy Processing

Fundamentally, copying memory around a single system is an expensive task, both in time and

(storage) space, and the costs inherent with performing a copy scale with the increased packet

sizes and counts, amplifying the problem.

This has lead to a number of efforts to tackle anywhere in the processing or forwarding

14

2: Related Work Asymmetric Multiprocessing

of messages where a copy would traditionally happen through ‘zero-copy’ techniques instead.

These techniques either use careful marshalling of data or memory tricks (such as memory

space mapping) to process messages in-place without ever having to copy them beyond their

initial ingress to the system.

Two particular frameworks which attempt to do this for network traffic are the Data Plane De-

velopment Kit (DPDK)[29] and Netmap[46]. Both attempt to provide a mechanism for userspace

processes to access message buffers more-or-less directly, without having to have the system

copy the messages into userspace first, and are gaining support for cases where much of the

data processing is to be done by discrete processes in userspace rather than just delivered to

a fixed endpoint.

2.6 Asymmetric Multiprocessing

While the challenge of managing a number of identical processors (or functionally equivalent

ones, ie. all x86 or x86 64) is complex in and of itself, when the processors have varying

capabilities this becomes an order of magnitude more difficult again.

GPUs, FPGAs and other specialised processing elements offer much greater efficiency for

specific tasks, but suffer when given others. This efficiency gap presents two problems for

systems attempting to use these processors:

Quantification Simply being able to put a meaningful value on a processors’ ability to handle a

given load is difficult. Capability systems design offers a possible solution, but do require

prior information on a given device before it’s metrics can be used. (But this in itself is no

worse than drivers in existing systems)

Execution In most cases, the architecture of the “exotic” processor is different to that of the

executing peer. This presents a compilation and execution problem, whereby all code

must be compiled for all available architectures, or must be in a form that can be made to

execute on all architectures (through the use of JIT, LLVM, VMs, etc.)

FatELF formats solve some of this for common platforms by bundling the ELF sections for

several architectures together in a single binary.

JIT compilation is another good approach for programs executing in unknown platforms,

but then has the overhead associated with compilation-on-demand.

A good hybrid of FatELF and JIT may be LLVM compiled code, where the final binary is

generated on the host during installation time, keeping the distributed “binary” in LLVM

form.

15

2: Related Work Networking

This may introduce strange transient errors due to differences in the compiler for specific

platforms. Even compiler versions or optimisation levels may have an effect on the final program

behaviour in particularly sensitive applications.

2.7 Networking

Moving beyond a single machine, the network characteristics and how they are handled by the

operating system also come in to play. Originally nothing more than simple serial interfaces

between machines, we have seen an explosion of complexity and capability since the first

designs for networks.

Even simple, low-end networks are now highly capable in their own right; largely due to the

standardisation of interface mechanisms between machines, allowing enormous interoperability.

It is now expected that one may take any given network-capable device, and attach it to any local

area network, often wirelessly, and be able to connect to other hosts with reasonable reliability

(network rules permitting).

While still orders of magnitude slower than the internal bus lines on a given host (PCIe 3.0 is

capable of transfer speeds of ≈32GB per second), commodity local networks are easily capable

of handling impressive speeds; 1000BASE-X networks peak at ≈125 MB per second, and high-

end data centre networks running 100GBASE-X networks peak at ≈12.5 GB per second.

Infiniband13 achieves a throughput in excess of current PCIe 3.0 technology, with Infiniband

EDR 12 peaking at an impressive ≈37.5 GB per second, and is expected to be double this in

2017 with the introduction of the HDRx specification14 easily bringing the effective throughput,

including protocol overhead in-line with the internal bus speeds of hosts.

Naturally, this is lower than the internal processor interconnect speeds used in the hosts,

which can, for example achieve 9.6 GT per second (Intel QuickPath Interconnect) between

processor cores, and 102 GB per second to memory15 - but with this kind of throughput the

differences in remote access when compared to local access become reduced.

2.7.1 Network Representation

One of the largest factors in determining how an operating system design approaches managing

its processes comes from how the network is represented to the rest of the system, and

conversely, how the system is presented to the rest of the network. By placing barriers along

the boundaries that networks lie, the overall effect is that the internals of the system are to be

cut off from the rest of the network. Alternatively, by not having these barriers, the system is

much more likely to be presented as a kind of group compute resource, allowing networked

applications to span over multiple systems.

16

2: Related Work Scaling and Migration

These two behaviour patterns are entirely opposed, and present characteristics that shape

the rest of the function of the operating system.

2.7.2 Hybrids and Overlays

Spanning the gap between isolated systems and shared systems are hybrids of the two, where

some portion of the system is exposed to the wider network, but the system itself runs inde-

pendantly of the rest. This is the case in Apache Hadoop, for example, where job runtimes

are dispatched to the worker nodes to be executed, along with data, if required, but the actual

nature of the system isn’t known to the service whatsoever - exactly how those worker nodes

actually allocate the space, time and connectivity to be able to execute those jobs is not known.

Other hybrid approaches include Docker, which provides limited-scope runtime overlays,

allowing processes to apparently run in relative isolation (They still can access the rest of the

running system, such as ioctl files and system calls), but otherwise present a pseudo-virtual

machine to the rest of the network (assuming the docker worker is a network job, of course).

2.7.3 Flow Marshalling

Recently, a number of technologies have emerged for handling network traffic in a number of

interesting ways.

Obvious bulk-effort attempts to manage network flows have been around for decades, with

approaches such as random back-off, various funneling techniques such as RED Queueand

associated techniques for flow control quickly becoming exceedingly common. Even the lowest-

grade software-only router can now easily handle the required throughput or queues to be

effective without harming the network flows for example.

However, with all the advances in this field, the ability to identify and track individual flows

has become key

2.8 Scaling and Migration

In parallel with the work taking place to create smaller, modular systems and be able to easily

spin up sand-boxed virtual machines there have also been efforts to create ecosystems that

support this new service model.

Amazon Web Services (AWS)16 is a prime example of this, offering tailored specific virtual

machine instances for particular tasks. By constraining developers to build services with par-

ticular structures and tasks, AWS applications can be replicated and migrated to scale with

demand.

17

2: Related Work Small Devices and IoT Networks

Naturally, this has significant financial advantages, as charging by usage can be metered

down to much smaller units, but also shows the advantages in creating systems whereby

the developer is not free to use general purpose hardware for any task, but must declare the

requirements of the process beforehand. This in itself lends weight to the argument for capability

systems, where this type of declarative runtime is required.

Alternatives to this declarative style use techniques such as static analysis to determine

the requirements of an application before runtime, but can lead to unexpected results, often

requesting higher specification containers than the processes actually need.

2.9 Security

The security of systems connected to one another has become increasingly pressing, with

dedicated attack groups reportedly being set up to breach specific systems. This in turn has

lead to a focus on separation and sandboxing of applications and services in an effort to limit

the range of attacks that can be performed on a given system.

Tightly controlled interactions between each sandbox allows the services and applications

to intercommunicate, and the main way that this is done is via sockets and other network-layer

interfaces, leaving the controlling operating system to route the messages either locally (as IPC)

or over the network.

It is worth noting that the operating system is doing no small amount of multiplexing at the

network interface layer, with an interface presenting itself as a number of endpoints simultan-

eously. Each virtual interface to the network card acts as a separate, complete network stack,

and as many protocols commonly in use today require complex state tracking (such as TCP[28])

the stacks themselves are managed entirely separately.

This goes completely against the previous approaches to networked services, where previ-

ously there was a strong push to move the functions of the network stack out to the network

card itself; many cards became fully-capable computers in their own right17 capable of running

full operating systems themselves inside the host machine; other cards embed entire Field-

Programmable Gate Array (FPGA)18 chips in an effort to move processing tasks directly to

dedicated or semi-dedicated hardware for traditional processing tasks.

2.10 Small Devices and IoT Networks

At the other end of the scale, far removed from large capable servers are the ubiquitous small

devices that now pervade our lives. These small devices, while generally low power and fairly

quiet (in network traffic terms) can collectively through sheer volume generate vast amounts of

network traffic.

18

2: Related Work Kernel Design

In many cases, the devices in question are more like device drivers for specific hardware in

a larger machine than they are a host in their own right. By treating them as such, we encounter

a vast, connected computing device, capable of spanning large physical areas as well as large

virtual, networked space.

From roughly mid-2015 there has been a huge increase in the number of small devices using

fairly heavyweight protocols with minimal designs; heavyweight by requiring some considerable

overhead to do fairly simple tasks, but lightweight by keeping the actual payload data very small

and simple.

2.11 Management

Once the number of concurrently executing processes reaches a certain point, the problem,

both for the programmer, and the system itself becomes one of management.

To further compound this problem, the behaviour of the underlying operating system and

hardware becomes a significant factor. Operating systems have a number of specific quirks that

cause performance drops, as policies decided in the system software determine how processes

interact.

Additionally, the hardware in use will have a great affect on the way processes behave;

once the hardware landscape becomes sufficiently diverse strange errors can occur, and be

exceedingly difficult to debug.

As has already been mentioned in this chapter, there was a push for more capable network

cards in high performance applications (and indeed, many still run today) with the cards able to

run an entire operating system of their own. In this environment, it becomes incredibly complex

to manage the separation of individual network stacks for applications, leading to a large number

of hand-over operations between the host operating system, it’s applications (and sandboxes),

the card operating system, and any of the processes running therein.

The popularity of systems designed for large scale computing tasks such as Apache Ha-

doop19 demonstrates the utility of the map / reduce approach to tackling large data sets.

By splitting a large task into individual, independent work units, then mapping them over a

large number of processors, followed by a final reduction stage to recombine the resultant data,

it is possible to vastly decrease the processing time required through parallelisation.

2.12 Kernel Design

With the progression in hardware, there was (and continues to be) a pressing need to revisit the

design of the operating system. In its most basic form, an operating system kernel:

19

2: Related Work Kernel Design

• Presents the hardware available to processes in a consistent, reliable way with the com-

plexities of the actual hardware abstracted away (The degree of abstraction is defined by

the nature of that particular kernel)

• Divides the computing resources up into time and space allocations for each process

running under its control.

These characteristics can be achieved in any number of unique ways, with some having

specific advantages for particular applications - Real Time Operating Systems (RTOSs) are one

example of this, with specific processes provided run-time guarantees to ensure performance

and timeliness of operation, and are frequently used where the applications running are safety

(or cost) critical.

By far the most common design philosophy for kernel design is, however, that of fairness;

dividing the resources into equal chunks to allow any process the opportunity to use its slice of

the overall machine. This can be seen especially in commercial instances of virtual machine

hosts. In these cases it is often paramount that the hypervisor or kernel be able to manage

the demands of several sub-kernels (virtual machines) on what they believe to be an entire

machine.

The following few designs illustrate some of the variety of approaches to these problems that

researchers have attempted, highlighted to show the diaspora of designs available.

2.12.1 The ‘Tesselation’ Design

In their ‘Tesselation[36]’ operating system, Liu et. al also note that the current model for kernel

design has not been designed to be used with modern hardware and that the number of cores

that are being employed in modern systems is increasing dramatically. This they believe should

be taken seriously as a design issue, and made the crux of the design, in addition to a constraint.

As the number of cores approaches the number of threads normally running on a desktop

machine, the issues of context switching become less and less apparent, and the tear down

mechanisms for caches and shared memory methods become more and more important as a

factor for slowing down the execution of programs. Rather than view the system as a single

core running multiple threads, the Tesselation system breaks down the hardware into ‘space-

time partitions’ which allow resources to be allocated to threads running on separate cores with

minimal impact on the life cycle of other threads.

Liu et. al define Space-time partitioning as:

Space-Time Partitioning in ‘Tesselation’, Rose Liu, et. al ... an isolated unit con-

taining a subset of physical machine resources such as cores, cache, memory,

guaranteed fractions of memory or network bandwidth, and energy budget.

20

2: Related Work Kernel Design

This is quite close to the definition of a virtualized machine in a normal virtual server, and

has no provision for threads or processes within the ‘partitions’, leaving the management of

multiprocessing up the partition’s resident code.

This leads to a simpler kernel design, as the task scheduling can be made much more

coarse-grained, and the partitions’ resident code can be given direct control over the behaviour

of threads in its working set.

Using this design, applications can then be written much as small micro-kernels on a re-

source constrained machine; an approach familiar to older games console designs, whereby

loading software into memory gives the program full control over the machine. In contrast

to games consoles, in which the loading software is much closer to a boot loader than a full

operating system, being entirely replaced by the application; Tesselation continues to execute

in parallel with the applications.

The Tesselation operating system can give hard assurances that given partitions will have

certain resources available to them at all times, thus the application can completely rely on the

availability of said resources, and utilise them fully without fear of them being taken by another

process and have to be paged in or out of memory. This would allow, as an example, a network

subsystem in a partitioned system to be given precisely as much CPU time and memory to

allow it to perform at peak performance, allowing it to make latency and throughput guarantees

ahead of execution time.

Furthermore, because the access to resources is being monitored by the kernel, the trans-

actions could have traditional QoS rules applied to them, provided that the services running in

the partitions can cope with the delay. This may lead to fairer scheduling (first come first serve,

prioritised traffic, fixed delays, and so forth), giving the application developer a much more fine

grained control over how and when messages should be run, and how much of the machine (or

indeed, machines) a partition should be allowed to use.

In addition to this, the separation of partitions may allow a ‘fast-restart’ mechanism to be

implemented for critical services. To illustrate the advantages of this, in the event of a network

service crash, the state of its memory could be retained, then the operating system can in-

place restart the network service in a partition with the same memory mapping in an attempt

to resume without interruption. Of course this brings the obvious dangers of continual crashing

due to memory corruption, but this could be detected with a simple maximum retry count for any

given service (yet another parameter to include in the partition definition).20

With partitions effectively defining a set of policies for resource access for a given program or

set of programs,the need for some sort of resource-permission manager is required, along with

the permissions stored in kernel controlled memory somewhere. This could quickly become

problematic, as the additional information takes up space for small partitions, forcing program-

21

2: Related Work Kernel Design

mers to combine their application functionality into single, larger partitions to avoid wasting

run-time storage on permissions. Furthermore, this resource management may slow down the

access to said resources, as transactions between the partition programs and kernel code would

have to be vetted for security before any access could be granted.

As previously stated in 2.12.1, there exists a possibility of using QoS-style rules for a parti-

tion, providing a mechanism for well-defined guarantees for performance and resource availab-

ility, unfortunately, this adds overhead to both run-time and partition creation events. Checking

the QoS rules for the system and the requested partition settings may cause considerable

latency in creating a partition (in a busy system), and during run-time, any dependency on

resource availability could become a problem as partitions are created and destroyed around

each other.

In some cases, applications may wish to use multiple partitions to gain additional security,

such as a web-service using a separate partition for script interpreters allowing them a safe

sandbox-like environment to run unsafe code in. However, this presents its own difficulties, as

programs would have to be written to cope with fast-restart functions in components of their

operation, and/or several partitions would have to be halted during a fast-restart to prevent data

access on a ‘dead’ partition.

Tessellation uses a kernel-level message passing mechanism to facilitate IPC, bringing both

the advantages and disadvantages inherent in a message-based system with it. (Namely,

latency, asynchronous calls, QoS, kernel-level buffers, and so forth) As an alternative, Rose Liu

et al. do talk about implementing a mechanism for limited shared memory between partitions,

although this would appear to break their security model by punching a hole in the separation

of partitions.

While the work undertaken in Tesselation has made significant inroads into producing a

better model for an operating system, it is the opinion of this author that work still remains with

optimisation and implementation and the challenges inherent therein. Additionally, the work

omits exactly how multi-core systems should implement this model, merely define a structure

for how applications may be contained in a multi-core environment.

2.12.2 The ‘Exokernel’ Design

The ‘Exokernel’[17] design requires a very small kernel which has the sole purpose of exposing

the hardware in a way that allows more generic operating system ‘libraries’ to actually perform

that which would normally be the kernel functions. This model requires that the kernel itself is

as simple as possible, whilst also effectively multiplexing and marshalling the various requests

for hardware access.

By keeping the complexity of the primitives exposed by the kernel to a minimum, the effi-

22

2: Related Work Kernel Design

ciency of the operations required to produce them can be maintained, keeping the processing

time down. Furthermore, with only very minimal abstraction being performed at this level,

the flexibility of the overlaying libraries is not compromised by unfolding already abstracted

interfaces to hardware.

This allows the libraries to provide a myriad of different interfaces to hardware, as there is no

obstruction to abstraction. Once the barriers of pre-existing primitives have been removed, the

libraries are free to abstract the functions of the operating system in any way that the developer

sees fit, including extending or replacing fundamental operating system operations.

With the majority of the operating system implemented in libraries, the number of kernel-

user space boundary crossings is reduced, as the processor spends most of it’s time in the

user-space libraries, only transitioning to perform actual hardware access, such as disk IO, or

communications.

As the kernel only provides the minimal required primitives for accessing hardware functions,

the access barriers for processes are smaller, allowing for near-direct access to hardware from

user-level services.

This brings a level of performance computing unachievable through the use of virtual ma-

chines to create the same abstractions, simply due to the program’s proximity to the hardware

(as illustrated in Figure 2.7) , with the abstraction and re-abstraction layers removed.

The kernel itself makes little or no assumptions about the purpose of accessing a hardware

resource, leaving the management of the resource itself up to the libraries. All the kernel does,

is to ensure that each process with access to hardware does so without disrupting any other

processes access, separating the protection of processes (which is handled in user-space) from

the management (multiplexing) of services.

The structure of the Exokernel has a few problems with the way that standard x86 or x86-64

architecture computers are constructed. One of which presents itself during boot, where the

kernel (which only knows of the notion of a disk controller by its address) is unable to load any

of the system libraries to perform bootstrap operations.

2.12.3 Implementation - Barrelfish

Many current multiprocessing frameworks assume that all processors are created equally; un-

fortunately, this simply isn’t true in a large number of cases. Excluding computer systems that

have been designed and built with the express intent of being used for multiprocessor work,

the modern computer is constructed with a myriad of different processors, each with their own

particular niche of high-performance.

The ‘Barrelfish’[5] kernel presents a very small requirements set with the express intent to be

23

2: Related Work Kernel Design

Figure 2.7: An approximation of the layers between normal
application code and the hardware they are executing on in
traditional and exokernel model operating systems

able to be executed on a large number of processors. This allows kernels to be deployed to pro-

grammable devices attached to the main machine, such as graphics cards and programmable

network interface cards.

Once deployed to a given processor, the kernel assesses the hardware available to it and

loads up any required drivers to provide minimal access, then waits for a coordinator kernel to

assign a process to it. While this reduces the complexity of processor look-up, it does so at the

expense of scalability as each processor in a machine needs to be able to communicate with

that single one to be part of the system.

Throughout its development, the Barrelfish operating system was designed with the following

requirements in mind;

• To at least match the performance of existing traditional operating systems.

• To easily and efficiently scale across large numbers of diverse processors.

• Allow easy migration to new platforms by keeping the code changes minimal.

24

2: Related Work Kernel Design

Figure 2.8: The Barrelfish architecture, as presented in“The
Multikernel: A New OS Architecture for Scalable Multicore
Systems”[5]

• Use the message passing mechanism for pipelining and batching to increase perform-

ance.

• To allow what would be traditional OS services to be migrated close to related hardware.

Rather than packaging the traditional kernel functions such as thread support, memory

management (allocation/de-allocation), and memory replication as kernel libraries - as would

be the case in a traditional operating system - these functions are performed in Monitors (see

Figure 2.8), processes that are associated with a specific processor which sit between the kernel

and any user-space applications running on the Barrelfish system.

Although the monitor processes allocate and free memory for user-space processes, they

are not hardware aware, and can allocate more memory than the current processor has avail-

able to it. In this case, the message passing IPC mechanisms kick in and allow memory to be

seamlessly allocated in other resource pools.

For shared memory or memory copy operations, Barrelfish uses multicast-style messages to

propagate changes in state as well as any IPC required. This is achieved by means of a common

interface to one or more methods of communication, which actually perform the transfer -

providing the application with a transparent pipe through which data can be exchanged.

This works across domains, such that a process communicating with another on the same

machine over the PCI/PCIe bus uses the same mechanisms as one communicating with an

entirely separate machine over a network interface. By doing this, processes can be migrated

away from each other - even across machines, provided there is a network link between them

to facilitate the communication channels.

The messaging system extends to the mechanism for state replication, which messages

marshalling memory at remote locations to keep relevant memory up-to-date across the system.

This means that state change is portable across different transmission methods, allowing for a

25

2: Related Work Kernel Design

common memory management system in all kernels.

This does lead to a system where message queue marshalling is rather critical to the

operating system as a whole, as all process intercommunication and memory management

is done through the same channels. It was quickly apparent that any changes in how the OS

managed the message queues (or differences in how the CPUs managed the queues) added

up to curious anomalies in performance.

Barrelfish appears to be a step in the right direction, in terms of architecture at least. By

their own admission the solution is not optimal, and could easily be improved upon, and the

array of hardware tests that were performed was rather limited, causing their own performance

benchmarks to be somewhat unrepresentative of what real hardware would do in ‘the wild’.

2.12.4 Implementation - Corey

In contrast to Tesselation and Barrelfish, Corey[8] seems much more concerned with how data

is used in the system over how the system integrates into a larger computing entity. This is

useful, as the authors (Silas Boyd-Wickizer et al.) have spent considerable time on examining

the viability of using the POSIX standard in a more multi-core aware way.

Noting that the number of cores in a given processor has been increasing over the years,

and that the total memory available to the processor has not, the Corey group point out that

the amount of memory available to each individual core is actually getting smaller (if we only

consider immediately available, high-speed memory stores, such as RAM, rather than long-term

storage).

While the cores do have access to other each other’s cache, the paths through which this

memory can be accessed are far slower than the path to the memory allocated to each core.

The read/write lag gets even worse if several cores have to be involved with the operation

through routing.

Furthermore, the way that processors are built is having an impact on how the memory

access paths are arranged, such that there are (usually) internal groupings between cores,

giving a very uneven memory latency for memory access as can be seen in Figure 2.9.

This routing for memory access has a further knock-on effect; the processors involved in

the routing usually have to stop execution of their own (possibly) unrelated tasks to act to move

memory around the processor, such that knowing the physical layout of the processor becomes

very important for memory arrangement.

Although this paper does not mention the concept of a ‘processor driver’ it does match very

well with what they appear to want to achieve, as this would allow the various mappings for each

processor core to be organised in a way that would allow them to be used with the rest of the

26

2: Related Work Kernel Design

Application RAM Application

Application

Socket

Network
Stack

Network
Stack

Socket

Application

Figure 2.9: Routes through hardware communication paths,
demonstrating the variety of latencies paths exhibit

operating system with minimal (if any) impact on the rest of the system.

The ‘Corey’ operating system uses the Exokernel design (See 2.12.2)

2.12.5 Implementation - Fabric

The Fabric[35] system is designed to provide a secure platform for distributed computation,

and achieves this through trust relationships between Nodes in a network and a modified Java

environment.

Programs are written in a Java derivative (Fabric) and its intermediate language (FabIL)

which combine Java Information Flows (JIF)21 and some adapted GNU Classpath libraries.

‘Fabric’ is a high-level programming tool, on roughly the same level as the Amazon Cloud

and with approximately the same goals.

The system can be broken down in to various ‘Nodes’ as illustrated in Figure 2.10;

• ‘Storage Nodes’ hold and maintain persistent data

• ‘Worker Nodes’ perform computation

• ‘Dissemination Nodes’...

– ...copy objects (data and code)

– ...increase availability (data and code)

These nodes connect to storage directly, and can both save and load data. They do not per-

form any calculations on the data objects, but instead hand them off to Worker or Dissemination

nodes for processing and distribution.

The only processing a Storage Node performs is to ensure that the data being written is

from a trusted source, and that it is newer than the object it currently has in store (to prevent

27

2: Related Work Kernel Design

Figure 2.10: The Fabric system overview, as presented in
“Fabric: a platform for secure distributed computation and
storage” [35]

stale data writes). It is possible to edit data directly on a Storage Node (as is described in the

next section) but this will only occur when large amounts of data are having particularly simple

operations done to them.

Worker Nodes actually perform any computation on data in the Fabric, and will only do so

if the programs they have been provided with are from trusted sources. Furthermore, Worker

Nodes will only run programs written in the Fabric’s own language (FabIL) although from there

they can process other languages during runtime provided that the node the program is running

on supports said other language.

Worker nodes operate in one of two modes during computation; they can either be running

code locally and calling data objects from Storage Nodes and Dissemination Nodes, or they can

load all the data required to run, then process the data using a form of RPC to execute program

data on the node holding the data.

28

2: Related Work Kernel Design

Exactly which mode of operation is used depends on the data/code cost ratio, whereby if it

is more ‘expensive’ to copy the data to the node, it will use RPCs, and leave the data in place,

whereas if the cost to transfer the program to other nodes is more ‘expensive’ the Worker will

copy all the required data objects to itself to perform computation on them in place.

The function of these nodes is quite simple - to bring the data closer to the objects that

require it.

This is achieved by copying data from the Storage Nodes and propagating it throughout the

system to increase availability and reduce the ‘costs’ described in the previous section.

Interestingly, there is no concrete specification on exactly how data should be transferred

between Dissemination Nodes - leaving them open to use any transmission method they can.

While this may appear to be a security hole, in reality it is not, as the Worker and Storage Nodes

will only use data from others they have formed a trust relationship with (this includes all nodes

back through a given data path), preventing any malicious node from providing bad data.

Because any nodes that either store or modify any data objects must have a trust relationship

that is at least as trusting as all other links in their data path, it prevents rogue nodes from

changing the data en-route to a store, as the store would not trust said node.

2.12.6 Implementation - Helios

The Helios[39] OS is designed to allow platforms with heterogeneous processing hardware to

better utilise the diverse processors available. This is achieved through ‘Satellite Kernels’ which

are spawned from a single initial kernel and deployed to any and all processing hardware in the

system. (PIO Cards, Network cards, etc.)

Rather than think of the kernel as a collection of drivers for hardware, the Helios paper takes

the view that the kernel should be treated as a CPU driver, in the same way that any other driver

in a system. This means that there should be a common interface to access a ‘processing

unit’ which allows programs to run on top, using features either provided directly in hardware by

whichever CPU the process is running on, or as software emulated hardware. This is a flip in the

normal abstraction model, whereby instead of a kernel specifying a method of communicating

with hardware, to which drivers adapt how the hardware actually works.

Because a kernel can be deployed to any number of fundamentally different processing

units, the architecture is probed by the first kernel to boot then it loads up the required satellite

kernels for the processing hardware available on the machine. These satellite kernels are then

written to the relevant hardware’s memory, and have their processors load the new program

data.

Once loaded, these kernels then connect back to the kernel that spawned them and any

29

2: Related Work Kernel Design

Figure 2.11: “This figure shows a general overview of the
architecture of the Helios operating system executing on a
machine with one general purpose CPU and a single program-
mable device ... Applications on different kernels communicate
via remote message-passing channels, which transparently
marshal and send messages between satellite kernels. ...”
- From “Helios: Heterogeneous Multiprocessing with Satellite
Kernels”[39]

other satellite kernels, establishing communication channels to each one in turn.

It is worth noting that each kernel maintaining connections to every other kernel works well

in the systems that were tested in the paper, but only a small number of kernels were actually

deployed to a system in any of the tests. They mention that this could cause scalability problems

as the number of kernels increases it will begin to significantly affect the amount of memory the

connections use up on lower-specification processors. It is expected that in the future, some

form of routing may be required to cope with the load.

The interface to IPC is well defined in the specification the paper provides, and hides the

transmission method from the processes that call it, allowing the kernel to marshal the mes-

sages along any number of communication channels - weather that be local or remote.

In the case of a remote IPC message, the kernel is free (assuming that it has a network

connection available to it) to use the normal IP network protocols (TCP/UDP) to communicate,

otherwise local messages are far more likely to be sent along interconnect busses in a given

machine (the specific nature of such channels depends on the nature of the machine).

All of this combines to a transparent method of communicating between processes and ker-

nels, allowing processes to be processor independent, and thus be called from any combination

of processing units.

To ensure that performance is not lost spending time transmitting messages around the

30

2: Related Work Summary

system, the kernel is designed to keep both local and remote communication to a minimum,

and only to perform IPC when absolutely required.

Namespaces are used to arrange services into a manageable structure in a Plan9[38] style

manner, and any non-programmable IO card is represented by a single endpoint connected to

a driver on the nearest kernel to the hardware.

The namespaces are managed by the coordinator kernel, which proved to be sufficient in

the small-scale tests that were performed in this paper, but it was noted that this could quickly

become a bottleneck as the number of satellite kernels increases possibly requiring a distributed

service discovery protocol of some sort being integrated into all the kernels.

During the tests performed on this architecture, notable increases in performance were seen

when dealing with large numbers of concurrent requests when put against a more traditional

OS. This can be clearly seen in their PNG file decompression tests, which showed an overall

approximate increase of 110% speed-up.

2.13 Summary

As has been discussed in this chapter, the natures of both the hardware and workflow support

that is in use today are much removed from that of as recently as 10 years ago, and because of

this some radical rethinking of how both operating systems and their interconnections - both in

software and in hardware - handle the hardware is required.

Furthermore, the hardware used to connect these systems together has improved greatly,

and the very nature of the network has changed. A much tighter service integration is hap-

pening, with local applications routinely using remote services as if they were on the local

host machine, rather than running them resident, and the communications between these

applications and their services, and indeed, all the layers in between have become exceedingly

important.

While various approaches to create a new model for the operating system have been mooted,

none has currently taken hold in mainstream deployments, but instead the ideas used in several

have been ported to more traditional systems, such as Linux, to present similar interfaces to

those in the prototypes.

With this in mind, along with the increased complexity of tooling as described in the opening

sections of this chapter, demonstrates a need for a new interaction method that incorporates

some of the middleware features available now, but implements them in a way that enabled the

system itself to perform the required operations more effectively than the current offerings.

To this end, the next chapter will discuss their integrated whole with the goal of producing a

singular idealised model for the communication and marshalling of messages in a way compat-

31

2: Related Work Summary

ible with the workflows and models discussed here, along with a discussion as to the behaviour

along the ‘edges’ of processes as they communicate with each other.

32

2: Related Work Summary

Footnotes

4GATE does in theory allow for true parallelism, provided that dependencies are distinct and separate - although

GATE itself is not handling this interleaving, the underlying operating system is

5The most up to date, complete list can be found at https://gate.ac.uk/gate/doc/usecases.html

6https://opennlp.apache.org/

7http://www.nltk.org/

8https://www.gnu.org/software/make/

9At the time of writing, the current specification is 3.1.1, and can be found at http://docs.oasis-open.org/mqtt/mqtt/

v3.1.1/os/mqtt-v3.1.1-os.html

10Intel R©Xeon R©Processor E7-8870 v3 - http://ark.intel.com/products/84682/

Intel-Xeon-Processor-E7-8870-v3-45M-Cache-2 10-GHz? ga=1.64899183.1500092289.1478029206 (2016)

11http://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf

12Macro-networks include any external to the individual host, including LANs, WANs, MANs, and so forth

13http://www.infinibandta.org/

14http://www.infinibandta.org/content/pages.php?pg=technology overview

15Intel Xeon E7-8870 v3 - http://ark.intel.com/products/84682/Intel-Xeon-Processor-E7-8870-v3-45M-Cache-2 10-GHz

16https://aws.amazon.com/

17The O2E-100 PCI Express Cavium OCTEON II CN68XX Packet Processor Card is an example of this type of card:

https://parpro.com/product/o2e-100-pci-express-cavium-octeon-ii-cn68xx-packet-processor-card/

18The Bittware 520n is an example of this approach: https://www.bittware.com/fpga/520n/

19http://hadoop.apache.org/

20It should be noted that this fast-restart mechanism is not unique, as it was implemented successfully in the CosmOS

operating system.

21http://www.cs.cornell.edu/jif/ - Java Information Flows (2016)

33

https://gate.ac.uk/gate/doc/usecases.html
https://opennlp.apache.org/
http://www.nltk.org/
https://www.gnu.org/software/make/
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://ark.intel.com/products/84682/Intel-Xeon-Processor-E7-8870-v3-45M-Cache-2_10-GHz?_ga=1.64899183.1500092289.1478029206
http://ark.intel.com/products/84682/Intel-Xeon-Processor-E7-8870-v3-45M-Cache-2_10-GHz?_ga=1.64899183.1500092289.1478029206
http://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf
http://www.infinibandta.org/
http://www.infinibandta.org/content/pages.php?pg=technology_overview
http://ark.intel.com/products/84682/Intel-Xeon-Processor-E7-8870-v3-45M-Cache-2_10-GHz
https://aws.amazon.com/
https://parpro.com/product/o2e-100-pci-express-cavium-octeon-ii-cn68xx-packet-processor-card/
https://www.bittware.com/fpga/520n/
http://hadoop.apache.org/
http://www.cs.cornell.edu/jif/

Chapter 3

Analysis

As discussed at length in Chapter 2, the current models used to describe computer systems

and their interactions are imperfect or incomplete - mostly as a result of the rapid progression

of the technology - and there have been a number of attempts to redefine how we describe

the process operating environment. Many of the approaches have drawn inspiration from the

macro-scale, modelling internal interactions the same way that external host-to-host operations

are performed on more traditional systems. Others have looked directly at the hardware and

followed the connectivity described in the system itself, scaling up to the operating system and

beyond to replicate the design at each level of granularity.

In this chapter, rather than attempting to combine the prior approaches into a single coherent

whole, a ‘clean room’ approach is taken, whereby the features of the communication are taken

in isolation and used to build a model from which a prototype can be constructed.

3.1 Automation and Flow

Naturally, when faced with a complex multi-step process, if individual operations can be divided,

there is a natural design whereby stages work largely independent of one another, with the

required information or data being the sole shared components.

However, this separation is not always as easily described in actuality as it is here, data

dependency intrinsically ties process steps together, requiring tighter and tighter integration.

This is one of the things that systems developers grappled with when the first multiprocessor

systems became widely available; precisely how do we work with the ‘other’ processor?

Obviously, multiprocessing systems had existed before, most commonly in the guise of time-

sharing systems of one variety or another. A single processor running otherwise disconnected

processes for multiple users, necessitating the inclusion of locking structures and controls

around critical data and resources in the machine. When faced with an environment such as

this, it is easy to see how it would quickly become difficult to escape this mode of operation -

34

3: Analysis Connectivity

access control for everything makes for a clean design overall.

3.2 Connectivity

However, rather than attempting to categorise or describe these systems and work backwards

towards a model which fits the best aspects of these various designs, instead taking a step back

and analysing the space from a purely theoretical standpoint is preferable. This is mostly be-

cause by doing so, any bias in the prior designs to conform to particular hardware requirements

or limitations can be discarded, ideally leaving us with as close a design to ‘perfect’ such that

there can be such.

3.2.1 Linear Chains to Graphs

Given that the complexity of the computing surface has increased dramatically, and that the

available representation used to describe process interactions has not, it is a fairly straightfor-

ward conclusion to reach that the overall utilisation of the available processing is going to be

sub-optimal.

This can be demonstrated clearly through diagrammatic representation:

1 2 3

4 5 6

7 8 9

Figure 3.1: A 3x3 grid of processing elements, each connected
to its neighbours with a contention-free, dedicated network
bus.

In Figure 3.1, we see a grid of 9 nodes, interconnected by communication paths arranged

in a grid. This kind of arrangement can be created in hardware through the use of XCore22

modules, should one be so inclined, as they provide the required 4 IO busses, one on each side

of the die, but in this case, the specifics of the implementation are not important.

For the purpose of the following discussion, it is assumed that each processor is capable of

handling only a single process (or thread) at once, and is not performing any kind of preemption,

such that oneprocessor = oneprocess. The mechanisms through which program code is loaded

on to the processors is ignored, and it is assumed that the processors all begin execution at the

same time, and it is further assumed that each processor has an entirely contention-free link to

its neighbours (ie. each pair has exclusive access to the connecting bus) and it is able to write

to multiple busses at the same time.

35

3: Analysis Connectivity

It is worth noting here that this exclusive access to the communication busses would only

ever in reality extend as far as the core interconnects on a traditional multicore processor (eg.

hyperchannel links in the Intel architectures, for example) and any links to other resources, such

as main memory, for example, are over contended links, necessitating flow control or locking to

ensure that transactions are not corrupted by intermingling messages.

Using this hypothetical processor arrangement, if we want to maximise the total processing

ability it follows that we should attempt to use all available processors. The simplest arrange-

ment for this would be a serpentine path through the processors, as shown in Figure 3.2.

1 2 3

4 5 6

7 8 9

Figure 3.2: A single serpentine chain through the 9 processing
elements, through which, assuming that the processing done
at each unit takes equal time would result in 100% utilisation
of all available processing power after 8 message writes.

In this arrangement, each processor pairing (< 1, 2 >, < 2, 3 >, etc.) has a dedicated com-

munication channel, and can expect contention-free communication at the maximum bandwidth

available at whatever clock speed they are executing on (it is assumed that all nodes run at the

same speed, for simplicity).

However, it does mean that Node 2 must wait for Node 1 before it can execute, equally Node

3 for Node 2, and so forth throughout the chain. This may actually be the most optimal way of

handling whatever load the application is designed to run (A ‘Sieve of Eratosthenes’ for prime-

hunting, for example), but there are non-linear loads that may benefit better from a different

arrangement.

1 2 3

4 5 6

7 8 9

Figure 3.3: By using the left-most-vertical communication
chain, this data flow could achieve 100% utilisation in only 4
message writes.

36

3: Analysis Connectivity

Consider the connectome 3.3. In this arrangement, the processors are arranged in a loose

tree formation, whereby if the initial node is Node 1, and the workload is decoupled enough, it

may be possible to distribute the overall load more effectively. Through Nodes 1,4,7 acting as

distributors, data can be readily shuttled to Nodes 2, 3, 5, 6, 8, 9.

1 2 3

4 5 6

7 8 9

Figure 3.4: In Figure 3.3 the left-most-vertical was used to
provide a faster path, but only had a maximum out-degree of 2
for any given node; in the arrangement here, using the centre-
vertical path (with node 2 as the initial data source) as the
main transport, the processors could achieve 100% utilisation
in only 3 message writes.

However, this may also not be the most optimal use of the space, consider the connectome

3.4 instead, and it will hopefully be clear that while the same number of receiver-only Nodes

is the same as the previous example, the arrangement of the distributor nodes allows for no

delays in processing, at the expense of a 1-long chain at each stage of the tree. (The 1-long

chain at each stage may be sub-optimal if there is tighter coupling between data elements. It is

not expected that this is ‘the best’ arrangement, but is merely given as an example.)

All of the previously mentioned connectomes assume that data can only be initiated at an

‘Edge-Node’, if it could be generated, or otherwise loaded from anywhere in the graph, then the

possibility of starting at Node 5 presents some interesting options.

1 2 3

4 5 6

7 8 9

Figure 3.5: With node 5 as the initial data source, following
this connection scheme, it would be possible to achieve 100%
utilisation in only 2 message writes. In practical terms, if this
were a real processor, getting data to node 5 for the initial
processing would be problematic, as processor designs fre-
quently only have memory interconnections around the edge,
and crossing busses would cause cross-talk issues.

The connectome 3.5 would provide fewer processing Nodes than previous examples (Only

37

3: Analysis Technical Challenges

Nodes 1, 3, 7, 9 have no out-degree), but in cases where data may require additional processing,

having the option of 2-chains at any stage may prove to be more valuable than other arrange-

ments.

3.2.2 Practicalities

So far, in this section we have been only considering the hypothetical; far removed from the

actual hardware available (in 2019, at the time of writing). These models are useful, however,

as they abstract away the differences between particular implementations, and leave us with a

simple model on to which assertions about the nature of the processing can be applied.

Moving beyond these models, however, we become tied to the real, and need to consider

the how this affects the models themselves. Luckily, as many real-world processes are input-

bound (where they spend most of their run time waiting for data to process) they can often be

de-scheduled, thus freeing the processor for any other waiting processes.

3.3 Technical Challenges

So far, this discussion has centered around the theoretical, but there are a number of challenges

in realising this type of model. Messages in ‘flight’ need to be stored somewhere and be owned

by either a process or the kernel itself, and the data structures needed to store these bring their

own problems as well.

3.3.1 Directionality and Buffering

Pipelines of processes (Figure 3.6) can implement fairly primitive methods of flow control, as

the only process that will be starved of data is the one immediately following the current one.

In practice, this means that the actual required buffer size for connections between nodes is 0.

Zero. In a modern Linux system, this is most analogous to the ‘signal’23 mechanism, through

which software interrupts are passed directly into handling functions in the processes they are

targeted at.

1 2 3 4

Figure 3.6: A 4-stage pipeline of processes linked by FIFO
queues. The initial (square) node is assumed to be a producer,
and will emit data into the chain.

Exactly what is a practical size for buffers, however, differs from what is required for buffer

size. While it is entirely possible to produce a zero-buffer chain, the usual way this is implemen-

ted (and certainly the way it is implemented in Linux/POSIX24, by default) is have a non-zero

38

3: Analysis Technical Challenges

buffer between each process, to absorb any processing time difference or scheduling oddity

rather than immediately blocking on a transmission.

1 2

(a) Buffering at the transmitter

1 2

(b) Buffering at the receiver

Figure 3.7: Buffering strategies for connected processes

If it is a given that a buffering strategy of some sort is required to allow processes to run

largely decoupled (and thus asynchronous) from one another, the question becomes where

best to place a buffer. There are two obvious arrangements; first, that where the transmitting

process buffers the messages until the receiver is ready to accept them (as shown in Figure

3.7a, and second, where the receiving process buffers incoming messages until it is ready to

process them (as shown in Figure 3.7b).

Both of these have subtle implementation details that can have significant effects to the

overall performance of the system, both in terms of actual throughput, but also in memory

usage. To illustrate this, let us consider the case where the receiver is buffering the incoming

messages; in this arrangement, the transmitting process can have no information about the

buffer state, so is quite capable of pushing messages until the receiving buffer is entirely full.

While this may not immediately be obviously bad per se. it can cause the transmitter to have

unpredictable run-time characteristics, as the system blocks the process from executing in a

non-deterministic manner (from the perspective of the transmitter).

Flipping this configuration the other way round presents a different problem, whereby the

transmitter now knows the state of the buffer, but the receiver now needs a mechanism to

determine if there are messages waiting in a ‘foreign’ buffer (foreign, as the memory the buffer

resides in is not owned by the process).

In traditional paged-memory-sharing systems (such as Linux, for example) the system is

able to perform a certain amount of trickery to make it appear that memory is present in both

process’ space, despite the process not actually owning the memory. Read-only page maps

between processes offer an interesting way to effectively map one structure into two (or indeed,

more) processes, however the the nature of the data structure in the memory suddenly becomes

critical. Lock-free structures offer a method through which these problems may be solved,

however, and will be discussed in Section 3.3.4.

There are ways around this problem, of course, but they involve additional support structures

to notify the ‘far ’ end of a communication channel (from the buffer) of the state of the buffers.

39

3: Analysis Technical Challenges

3.3.2 External Buffers and System Buffers

So far, the only buffering situations described have been where the processes involved are

effectively operating in isolation. Obviously, this is almost never the actual case - processes

generally run on a computer system also running a large number of API and ABI frameworks

behind the scenes to support the required interactions.

This leads to a third option for buffering strategy, whereby no process has a buffer. In this

model, the system holds the buffer or buffers for the processes, marshalling the messages to

and from the buffer to maintain the communication links.

In architectural terms, this is much more like a network router than a network switch - the

internal buffer is entirely invisible to both the transmitter and the receiver, presenting itself only

as a transmission delay.

0

1 2 3 4

Figure 3.8: Placing the buffer in the routing process results
in a much reduced memory surface, but presents more copy
requirements for the router to get the messages into the
connected processes.

This design also simplifies the options for allowing access to the messages in memory

directly, as the routing process can allow direct, read-only access to its buffers, resulting in

true zero-copy semantics and performance. However, this speed increase comes at the cost of

security.

Current designs of x64 processors are only able to restrict memory access through mapping

operations at the page level, sub-page mappings would quickly result in extremely large and

cumbersome page tables, and indeed with RAM sizes increasing over time, the pressure to

make each page larger (1miB pages and 4miB pages) is growing proportionately, making this

approach on x64 architectures less likely.

ARM processors, by contrast often have specifically engineered sections of memory which

are only accessed through a message passing interface (in effect, treating their co-processors

more like an external peripheral than as part of an integrated SoC25. As these interfaces are

built in the silicon of the processor, they have special security measures placed on them that

allow only selective access, avoiding the problems discussed here.

These message passing interfaces have proven to be sufficiently performant as to be able to

handle extremely high bandwidth communications, for display or camera interfaces, for example,

so would be possibly to use to facilitate a kind of centralised message passing store, should such

40

3: Analysis Technical Challenges

a platform be available.

3.3.3 Multipath IPC

Another particularly interesting feature of unidirectional links in this kind of structure is that they

are not limited to unicast links, but can instead be targeted at multiple receivers with a number

of different policies to delivery.

1

2

3

4

(a) One possible anycast buffering strategy
structures

1

1

2

3

(b) The reverse of the anycast model, the multi-
source configuration

Figure 3.9

Take the fairly common case of an anycast message (see Figure 3.9a); in this case, the

message is expected to be handled by only one receiver, but can be picked up by any of the

connected endpoints. This type of connectivity is frequently seen by dispatcher-type services,

such as server front-end services, which dispatch jobs to a pool of worker processes which

actually handle the job. In this configuration, the precise worker executing the job is unimportant,

merely that the job is handled as soon as it is possible to do so.

As the data in the buffer only needs to go to a single receiver (any of them) there only ever

needs to be a single instance of the buffered message; any more than this would be pointless, as

once a receiver has picked up a message, there is no need for the remaining receivers to have

access to the data. A naive solution for this might include buffers at the receiver end, rather

than the transmitter side, but doing so would preclude demand-based retrieval, thus pushing

data onto what may already be a loaded receiving process, causing needless wait times.

Even in the fairly simple example shown in Figure 3.6, there are additional implementation

specific complications.

The networks that have been discussed so far have been open; open networks have no

in-degree greater than 1, and thus, can be described fully by tree structures. In Figure 3.10, the

network is now closed at node 4, and in doing so brings a number of interesting problems.

If messages are immutable and transferable, such that a given message at 1 is eventually

passed to 4 via the paths p′ = {1, 2, 3, 4} and p′′ = {1, 2, 5, 6, 4} not only will there be two

apparently identical messages received at 4, but also there will be an out-of-order message

41

3: Analysis Technical Challenges

1 2 3 4

5 6

Figure 3.10: Branching and Merging communication paths in
a process network. Note that the semantics of handling the
plural in-dimension of Node 4 can become complex on their
own, without the complexity of the rest of the system.

received at 4, caused by the differing path lengths (length(p′) = 4, and length(p′′) = 5).

Therefore, if the process performed at node 4 is sensitive to message order, a considerable

number of messages may be required to be queued up for processing from path p′ while waiting

for p′′ to catch up. Unfortunately, the larger the total data payload is, the more extreme this

buffering requirement becomes, so while this situation is surely unavoidable in some cases, if

the network is to be generally buffer-light, individual messages should be as self-contained as

possible.

In summary, beyond the rules for handling messages in the network itself, there is also a

need to define a way to handle the inbound and outbound messages at each node in the graph,

as this dictates many of the characteristics of the network beyond each node.

3.3.4 Lock-Free Data Structures

So far, this text has focused on the network and messages, but some discussion of the data

structures which could be used to handle the message passing and storage required to realise

these designs.

Lock free data structures offer an alternative to traditional lock-based multi-process-access

or multi-thread-access structures. Instead of guarding sections by semaphore or mutex oper-

ators, they instead use a number of processor-specific atomic operations to ensure that the

structure is preserved in a valid state at all times.

This has advantages both in speed - atomic operations are often single-cycle, rather than

mutex or semaphores which often run for multiple cycles - and concurrency - as the access

is mediated by operations which often have no upper bounds on the number of concurrent

actors, and therefore are desirable for the kind of high-speed data switching operations thus far

discussed.

Traditional multi-access locking structures generally follow the access methods shown in

Algorithm 1 and 2, which use mutex-type structures to lock sections off from multiple threads

while ‘dangerous’ operations are performed.

Variations on these use semaphores (also known sometimes as counting mutexes) to restrict

42

3: Analysis Technical Challenges

Function AccessSharedStructure()

Get reference to shared structure;
Acquire Lock

Get a reference to mutable data;
Mutate any data required in the mutable data block;
Store mutated data;
Restore valid state;

Release Lock
Release any temporary resources;

Algorithm 1: A single atomic section encompassing the entire function. This is pretty much
the worst design for implementing this kind of access as it precludes any interleaving of
operations for the entire runtime of the function.

access to a small number of actors rather than just a single one.

Function AccessSharedStructure()

Get reference to shared structure;
Acquire Lock

Get a reference to mutable data;
Restore valid state;

Release Lock
Mutate any data required in the mutable data block;
Acquire Lock

Store mutated data;
Restore valid state;

Release Lock
Release any temporary resources;

Algorithm 2: Two atomic sections provide an opportunity for other accesses to the shared
structure while this one is mutating the data in the block it requested. This is better, but still
requires that the entire structure be ‘owned’ by this process to proceed.

By contrast, lock-free structures attempt to ensure that the only operations performed on a

structure that are considered ‘dangerous’ are those that can be done entirely atomically in a

single instruction on the processor.

There are only a handful of truly atomic operations that can be done; gcc (as of 4.4.5)

supports three types of access via memory barrier mechanisms; fetch-then-muate, mutate-

then-fetch and finally evaluate-then-execute.

The first two types have the form (in this case, for an add operation) sync fetch and add

sync add and fetch, and are supported for the add, sub, or, and, xor and nand functions.

Together, these form semantics which align with pre- and post- increment or decrement opera-

tions familiar to C-like languages.

By way of example, a guaranteed pre-atomic-add (aka. pre-increment) would involve a call

to sync add and fetch().

While these functions are clearly useful for lock-free operations, (as they require no ad-

ditional boilerplate to ensure atomicity) the real enablers are the evaluate-then-operate type

43

3: Analysis Technical Challenges

functions.

• sync bool compare and swap

• sync val compare and swap

• sync lock test and set

These functions allow decisions based on the state of memory to be made entirely atomically

while also modifying the state of that memory. The classical example for where this can be used

is the compare and swap operation, which is often used to implement mutexes themselves by

restricting the acquisition or modification of a variable in memory (a guard variable) without the

variable being in a declared state.

Function AccessSharedStructure()

Get reference to shared structure;
Atomic Get mutable block and set to new valid state;
Mutate any data required in the mutable data block;
Atomic Set shared structure to new valid state;

Algorithm 3: A simplified overview of lock-free access to shared structures. Note that the
lines marked Atomic are performed as a single (and thus un-preemptable) operation, and are
processor specific.

Consequently, through these mechanisms, a lock-free structure can be formed that performs

as described in Algorithm 3, allowing potentially wait-free access.

While a lock-free structure are entirely possible using these operations, the behaviour of

such implementations will be in one of two classes, either truly wait-free operation, or merely in

a lock-free manner.

Wait-free functions allow a calling process to continue irrespective of the internal state of

the underlying data structure, whereas lock-free functions may cause non-deterministic delays

when called, but attempt to minimise the delay they cause (generally) by keeping the caller

resident throughout the process.

Depending on the particular requirements of the process, either access may be preferable,

but only the application can know which is objectively better in most cases.

For the purposes of buffering data between processes asynchronously, the wait-free ap-

proach is preferred, but not required, as traditional transmitting processes already expect that

their output channels may halt transmission until the receiver is ready to handle the data.

If wait-free structures are available for the buffers, however, they can be used to reduce

the output jitter as seen by the process to zero, excepting cases where throughput limiting is

required.

44

3: Analysis Map and Reduce

3.3.5 Summary

Naturally, with the constraints of only using atomic operations to enforce structural validity,

the implementation of a lock-free structure can easily become very complex. Thankfully, the

libLFDS[33] library provides a number of pre-made lock-free structures ready to use, including

a ring buffer and various queue implementations - both perfect for use in buffering operations.

However, for the purposes of the prototype, the dominant overheads are more likely to be

the actual message transfer mechanism, as the number of nodes in test setups will tend to be

quite small, so address table and forward list lookups should be close to as fast as they can

theoretically be in most cases.

3.4 Map and Reduce

When faced with a large data set, it is not uncommon for approaches to process this data to look

to multicomputing frameworks such as Apache Hadoop[58] to distribute the processing load to

a cluster of machines configured to execute jobs from one or more dispatchers.

For Apache Hadoop (henceforth referred to simply as ‘Hadoop’) the key processing primit-

ives are the map and reduce operations, from which all operations are derived in this class of

computing.

The basic function of the map function is demonstrated graphically in Figure 3.11 along

with its pair function reduce in Figure 3.12 - it is worth noting that the exact order of operations

applied does not matter for the purposes of map or reduce, as normally the input data is normally

immutable, requiring the function or framework to build an entirely new data set for the return.

Sometimes this new data set in-place replaces the original data set reference or storage, but

during the operation there are two distinct sets of data in play, the input and output.

Figure 3.11: A graphical representation of the ‘Map’ operation.

Taking a function input, ‘Map’ applies this to each element of a data set returning the results

45

3: Analysis Map and Reduce

of this operation with the indices unchanged. This function needs not only relate to a single

element, but may require multiple elements in the input set to produce the output set - this

means that implementations commonly use immutable data structures for the input and output

sets, such that data cannot be mutated by one function which would immediately affect another,

as this would cause the order of processing to matter for the results to be consistent between

runs.

This can become a problem for extremely large input sets, if only from a memory allocation

perspective; the requirement for the output set storage to be separate from the input set means

that naive implementations can end up requiring double the storage space to operate correctly.

Some implementations may reuse unchanged data from the input set, only storing the changes

in the new output before merging them back into the input set for an in-place operation, but

doing so requires that the function being applied only partially mutates the data.

Without the average case for these operations only touching a subset of the input set, the

change tracking requirements of the output set end up causing its overall storage requirements

to be much larger, which will result in unpredictable performance due to differing complexity of

writing a change as to not, and having two independent look up and storage systems in use.

Taking a supplied function, a ‘Reduce’ applied this to the entire data set of size = n, (or

sub-collections therein) and returns the result as a collection of size <= n. In many cases, this

operation will result in a smaller output data set than it was supplied, hence the name ‘Reduce’,

but this is not always the case, as some ‘Reduce’ operations will inherently be unable to produce

a smaller set.

While the functions performed by map are both injective and surjective (thus form a bijection)

reduce performs non-injective, but surjective functions; by taking the input set and applying a

function that conforms thus it produces output sets that either match, or ideally, are smaller in

size than the input - hence the term reduce.

Figure 3.12: A graphical representation of the ‘Reduce’ oper-
ation.

In a computational linguistic sense - or indeed, any discipline with extremely large data

46

3: Analysis Map and Reduce

sets - the requirement for these two functions to have an immutable input set becomes very

problematic. With the limiting factor of available RAM in any given host, it quickly becomes

impractical, if not impossible to perform any operations on the input data without having to

resort to dividing, simplifying, or otherwise altering the data such that it will fit alongside the

output copy, which can be up to and including the same size as the input set.

Oftentimes, this is achieved by first encoding the input set in to a representative form - the

exact nature of which depends on quite what operation is being performed - then translating

the output back in to a form useful to further processing. With a multi-stage process (a not

uncommon state) this can mean that multiple translations are required on both the entry and

exit to and from a process; this can be visualised as shown in Figure 3.13.

Input Translation

Map/Reduce Process

Output Translation

Figure 3.13: Sending data through a map/reduce (or otherwise
highly parallel operation) that requires that the input set be im-
mutable often requires additional translation stages to ensure
that the data can fit in working memory.

Thus; if the data in question is highly co-dependant, the total amount of parallel processing is

limited by that dependence. If we assume we have a data set with a given number of elements

our ideal parallelism - assuming a machine capable of infinite parallel processes - is also that

same number.

parallelism = elements (3.1)

However, if each element requires some number of other elements to have the function

executed on it, the total parallelism becomes:

parallelism =
elements

dependants + 1
(3.2)

In practice, this means that the minimum number of sequential passes over a given data set

to get it to a new valid state becomes the inverse of this.

sequential passes =
dependants + 1

elements
(3.3)

47

3: Analysis GPU Case Study - GPU Sort

A clear case where this parallelism model is apparent is where a GPU is used. Processing

data on a GPU is not as straightforward as running the same algorithm on a multi-core general

purpose processor; both the communication and memory architectures of GPUs have their own

particular quirks that need to be accounted for.

The next few sections will detail a case study using a high-performance GPU for processing

concordance lines from a large input dataset - one that almost entirely fills the GPU’s on-board

memory - and explore where and how GPU computing techniques achieve the performance

they are known for.

3.5 GPU Case Study - GPU Sort

Corpus data is used in many areas of Digital Humanities, Natural Language Processing, Human

Language Technologies, Historical Text Mining and Corpus Linguistics; increasingly, however,

the size of corpus data is becoming unmanageable through traditional means. Taking digital

humanities as an example, national and international digitisation initiatives are bringing huge

quantities of archive material in image and full text form directly and quickly to the historian’s

desktop. Processing such data at speed, on the other hand, will almost certainly exceed the

limits of traditional database models and desktop software packages.

Similarly, the “Web as a Corpus” paradigm has brought vast quantities of Internet-based

data to corpus linguists. However, any search or sort of results from these rich datasets is likely

to take from minutes to hours to days using desktop corpus tools such as WordSmith Tools[60]

and AntConc[1] as the data in question continues to grow.

To address the problems of handling massive data sets, international infrastructure projects,

such as CLARIN26 and DARIAH27, are emerging with support for these large corpora under

the umbrella of ‘big data’. In corpus linguistics, researchers now have access to tools such as

Sketch Engine[48] and the family of BYU Corpora[9], which aim to support pre-compiled billion-

word corpora. In both cases, these systems are remotely hosted and are also not particularly

easy to configure for specialist datasets, as is more and more the case in the fast moving corpus

linguistics arena.

Recently developments have produced semi-cloud based systems; GATE[21], Wmatrix[59],

and CQPweb[45] all provide interfaces which can provide users with local access to large data

sources. However, the installation and configuration of such systems is far from simple, making

them inaccessible to most social science and humanities based scholars.

Hence, there is still a need to investigate processing efficiency improvements for locally

controlled and installed corpus retrieval software tools and databases - the researchers’ desktop

continues to be the primary source of computing resource used. Core tasks such as corpus

48

3: Analysis GPU Case Study - GPU Sort

indexing, calculating n-grams, creating collocations, and sorting results on billion-word data-

bases cannot feasibly be carried out on desktop computers within a reasonable timescale using

traditional techniques - even those which utilize the common multi-core processors in those

desktops.

Rather than leverage the compute power of the continually growing distributed computing

frameworks, we approach these problems by targetting the currently underused resources of

the local machine. GPUs are common, and capable coprocessing devices built in to almost

every device - even embedded systems now contain discrete GPUs - and these are being used

to great effect in other fields of science, but they often do require a change in how data is

handled due to their very nature.

In recent years, high-performance, general-purpose graphics processing units have become

increasingly available to the scientific community, and projects utilising them have been met

with considerable success as described in Deng [13] and Melchor et al. [37] and Sun, Ricci and

Curry [49]. Unfortunately, their use in corpus linguistics and natural language processing has

been limited at best, and many areas of their uses have yet to be explored.

With corpora exceeding the multi-billion-word mark, even these measures are unable to

complete experiments within reasonable time, often spanning days of operation [57]. In addition,

enhancements designed for other areas of computing, e.g., Cederman and Tsigas [10] and

Rashid, Hassanein and Hammad [44] have proved to be not well suited to corpus processing.

3.5.1 Issues with GPU Hardware

GPUs are extremely good at running vast numbers (in the thousands) of parallel processes on

independent data. The problem comes when processing that data requires other elements in

the same data set; the architecture currently used in these devices means that the view any

given processor has on memory is unlikely to be the current, complete, coherent one, but a

shadow of some previous state.

Exactly how this memory is arranged is shown in Figure 3.14, with multiple layers of caches,

the precise view a single processing element has on the overall state of the GPU memory is

very questionable at any given moment. This is compounded by multiple processing elements

using the same cache as the layers get closer to the main GPU RAM.

To ensure memory coherency across large input sets, there need to be certain ‘checkpoints’

(of sorts) which allow the CUDA framework to re-synchronise and consolidate the memory at

the various cache levels. Note that the memory reads use the highest level without any local

changes, but as soon as a write is performed, the first-hit cache records the new value, so

locally, changes are correct, but crossing a cache boundary will give incorrect results, quickly

leading to semi- or non-deterministic behaviour.

49

3: Analysis GPU Case Study - GPU Sort

Figure 3.14: The layers of caching in a GPU; Note that sync
operations are likely not to occur very often during normal
operation, unless the software mandates it, and to ensure
coherency, the processing on the synchronising elements
must briefly halt. This structure is replicated for each group
of processors in the GPU.

3.5.2 Expermiental Methodology

... began to diminish and soon there were no more visitors Madame ...
... as though it had been there for months He even went ...

... of declaring that as yet there were no signs of decomposition ...
... the stairs were distinctly heard There was silence for a few ...

... ready to go downstairs when there appeared before her her son ...
... the terms of this agreement There are a few things that ...

... agreement See paragraph C below There are a lot of things ...

Figure 3.15: A sample of the input set used for testing the
sorting algorithms, truncated to fit this format. The actual prefix
and postfix strings were at least 10 words long each

To evaluate the potential gains of using General Purpose Graphics Processing unit (GPGPU)

techniques for corpus retrieval operations, it was decided the focus should be on one of the

most common and time consuming tasks that corpus linguists need to perform; namely that of

sorting the concordance lines generated from the output of another process, such as those from

a database query.

Once concordance lines are extracted or displayed in a corpus retrieval system, analysts

need to be able to identify language patterns in the results set. Due to the large number of res-

ults, the concordance lines cannot reasonably be read manually, and so some pre-processing

is required typically involving a sorting stage.

50

3: Analysis GPU Case Study - GPU Sort

Most concordancing tools, such as WordSmith Tools and AntConc, can perform a multi-

level sort of the results based on the preceding and/or following words. However this can be

a very lengthy operation, especially when many hundreds of thousands of concordance lines

emerging from large corpora require processing; this can be especially bad if the output set is

large enough to span multiple memory boundaries, and unfortunately this is often the case.

To generate a dataset to process, the published BNC frequency lists of “Word Frequencies

in Written and Spoken English” (Rayson et. al)28 were used, which in turn were used with

a corpus generated from the Gutenburg Project books data29 to generate CSV input sets as

shown in Figure 3.15.

These were loaded into memory in full, and stored such that the entire concordance was

kept in RAM. While this may seem sub-optimal, this was done in an attempt to present data

that represented the performance of the GPGPU device, rather than memory usage tricks.

Additionally, the batch-processing style of operation used in GPGPU computing limits our ability

to do most traditional sorting techniques for large data sets, such as an external merge sort, as

the GPU available does not support the recursion depth required to process this data30.

Following the above procedure, it was possible to reduce the problem to an entirely data

oriented issue and avoid the characteristics of disks, buses, networks and other hardware

components interfering with the performance measures.

Let collection = Unordered array of values to sort ;
Let actions = 0 ;
repeat

actions = 0 ;
for index=0 .. n, step 2 do

if collection[index] >collection[index+1] then
Swap collection[index] and collection[index+1] ;
actions ++ ;

end
end
for index=1 .. n, step 2 do

if collection[index] >collection[index+1] then
Swap collection[index] and collection[index+1] ;
actions ++ ;

end
end

until actions == 0;

Algorithm 4: The ’Swap Sort’ algorithm, whereby even, then odd pairs of elements are tested
to determine if they should be swapped, and if so are. Each swap is counted, and if no more
swaps are found, the algorithm breaks out of the testing loop. This is normally a terrible way
to sort a dataset, but with the abundant processing in the GPU, the technique proves quite
powerful.

A preliminary investigation of different sorting algorithms concluded that most are very data-

copy sensitive (requiring many short batch operations and many host-device memory copies),

51

3: Analysis GPU Case Study - GPU Sort

so instead of using particularly elegant algorithmic techniques, the simplest sorting technique

with the maximum parallelism was selected: the swapping sort (See Algorithm 4).

In the swapping sort, concordance lines are directly loaded into memory on the graphics

card and processed in place by comparing each line to its immediate neighbours in the input

set, and swapping the entries if they are incorrectly ordered; this is repeated until the entire

set is sorted. While this technique would be extremely inefficient on a CPU (by modern sorting

algorithm standards), it works impressively well on a GPU, as we can perform large batches

(over 27,000 entries, on a nVidia GTX Titan) at once.

The specifications of the machine used for these tests is described in Table 3.1, but the exact

specification for the hardware is not particularly critical for achieving similar results. The use of

a GTX Titan or better is recommended should this experiment be repeated, as older cards have

smaller video memory areas, resulting in higher instances of copying to and from the mass

storage device (hard drive or equivalent). The SSD in particular is not required, but was used

for these tests to expedite the test duration through eliminating the delays normally incurred

through using mechanical disks; even with the sporting speedup of the GPU, the bottleneck in

this configuration would always be the load and unload phases due to the limited copy bandwidth

of the GPU31.

CPU: Intel “Sandy Bridge” i7, desktop edition (quad core with hyperthreading support).
GPU: nVidia “GTX Titan” graphics card, 6GB video memory.
RAM: 6GB Triple Channel memory.
Disk: A generic 64GB 6GB/s SSD.

Table 3.1: The specification of the machine used to perform
the tests.

3.5.3 Results

Running the swap-sort algorithm on the GPU with the provided data yielded the results shown

in Figures 3.16 and 3.1732. As can be seen in these two figures, the GPU accelerated sort

consistently beats the sort on a normal CPU excepting in cases where the input set is extremely

small.

Below an input set size of 2000 concordance lines, the CPU has a slight advantage, as

the GPU has a small delay involved with deploying CUDA kernels33, presenting an absolute

minimum throughput. However, above 2000 concordance lines the GPU is several orders of

magnitude faster than the CPU, and remains consistently better throughout all the other test

cases.

52

3: Analysis GPU Case Study - GPU Sort

Figure 3.16: The measured CPU and GPU performance
measurements shown on the same axis. Beyond 40,000 con-
cordance lines, the sorting technique took so long to complete
on the CPU as to be useless, while the GPU continued to
perform exceptionally well. Note that the y-scale is logarithmic.

Figure 3.17: The first portion of Figure 3.16, showing the initial
CPU advantage for very small numbers of concordance lines.

3.5.4 Discussion and Conclusions

This experimentation clearly shows the power of the parallelism inherent in GPU hardware,

along with the ability of the map/reduce paradigm to maximise the potential performance in this

hardware. Whereas CPU-only based approaches quickly become cumbersome above 40,000

concordance lines, the GPU approach - even using such an inefficient sorting algorithm - carries

on performing far better up to an beyond 10 million lines.

The memory coherence issue is problematic for traditional sorting methods, with GPU memory

intentionally having inconsistencies introduced to increase the processing speed of individual

processing elements, there needs to be care taken to ensure the validity of the processed data.

At the time that this experiment was carried out, CUDA had yet to provide a mechanism for long-

running processes on the GPU to communicate directly with the host runtime, and this prevented

53

3: Analysis CPU Bugs - Meltdown and Spectre

any further experimentation with techniques involving external long-term-storage, however with

a more up-to-date GPU and CUDA runtime, it should now be possible to achieve this kind of

live-processing, provided that any scheduling and/or locking issues can be overcome.

The processing used for these tests is best described as ‘out-of-data-path’ processing, as

the data would not normally be processed where it has been for this experiment; Normally one

would expect that moving the data further from where it is stored would result in slower overall

performance, but with the immense processing power available in a GPU, once in place the

gains more than make up for the longer overall data path, as was also the case for Deng [13]

and Melchor et al. [37] and Sun, Ricci and Curry [49].

This style of processing - taking an operation and vastly increasing the number of parallel

instances of this operation to get increased performance - has been shown in this case study

to have significant gains, even when (or arguably especially when) the actual operations in

question are extremely simple.

This has been known in the literature for some considerable time, but only in recent years

have the processors with enough actual parallel capability been available; although even in

situations where a multiprocessing unit is used, if the chains of operations are reasonably

distinct, some of the gains here can also be realised.

3.6 CPU Bugs - Meltdown and Spectre

During the course of this thesis - specifically in the early part of 2018 - it became apparent

that there was a serious problem with the behaviour of certain processors (generally Intel, but

also AMD and ARM), whereby attackers were using the characteristics of the operating system

memory access to determine the value of the memory therein.

These attacks were known as Spectre[30] and Meltdown[34], both of which were significant

enough to warrant public visibility and their own informational site34.

In the case of this work, however, they are important as the patches that came to fix these

issues altered the way in which memory could be accessed and written across the board35

The specific paths the operating system took after the patches removed the differences in

execution time between accessing valid and invalid memory areas - this would normally not

be a problem, as most processes naturally use only valid memory areas, but in cases where

memory access restrictions are put in place using hardware support, this can result in noticeable

slowdown.

As has been discussed in this chapter (Section 3.3.2), there are techniques which endeavour

to use the memory management hardware (often referred to as the MMU or Memory Manage-

ment Unit) as a gatekeeper for message access, and it should be noted that these attacks and

54

3: Analysis Summary

subsequent modification to the system behaviour will have a negative effect overall, and prior

attempts to characterise the systems have been invalidated by these changes.

3.7 Summary

To make meaningful inroads into processing large amounts of textual data, it is no longer simply

enough to throw standard general-purpose processors at the problem. Simple parallelism is

no longer enough to deal with the complex input data without risking the coherency of the

output, and while locking or transactional data structures (such as database systems) provide

one way of handling this in a practical sense, they greatly limit both the flexibility of the solutions

presented, and the overall performance.

Having a single point of coordination is no longer a viable solution to this problem, and

instead there must be a distributed method of dealing with the flow of data through analysis

tools.

In the next chapter, the design of a solution using the techniques explored here is explored

and constructed.

55

3: Analysis Summary

Footnotes

22At the time of writing, details of the xMos XCORE modules can be found at https://www.xmos.com/products/

#general although the website seems to be changing.

23signal manual page, http://man7.org/linux/man-pages/man7/signal.7.html

24According to the pipe man page; https://linux.die.net/man/7/pipe, the pipe buffer is 65536 bytes since Linux 2.6.11

- ie. unsigned short long in C

25System on Chip

26See https://www.clarin.eu/ for the current project status

27See https://www.dariah.eu/ for the current project status

28http://ucrel.lancs.ac.uk/bncfreq/flists.html

29http://www.gutenberg.org/wiki/Gutenberg:The CD and DVD Project

30When this experiment was run, the CUDA framework did not support the required features for a merge sort, namely

the recursion depth and the dynamic instantiation of new kernels. This is now possible, and further research inroads

have been made by other authors into other sorting techniques.

31This particular experiment was carried out in 2014, since then the available copy engines in nVidia GPUs has

increased significantly - a modern reproduction of this methodology would have far less load and unload delay, and may

also be able to stream the data in as required from a larger backing store. Unfortunately the hardware available at the

time was incapable of this, despite efforts to the case.

32The data for these plots as well as additional data can be found at http://johnvidler.co.uk/academia/cmlc-2014/

33A CUDA kernel is the GPGPU equivalent of a CPU thread

34https://spectreattack.com/

35The patches themselves included both operating system modifications and microcode patches to the processors

themselves

56

https://www.xmos.com/products/##general
https://www.xmos.com/products/##general
http://man7.org/linux/man-pages/man7/signal.7.html
https://linux.die.net/man/7/pipe
https://www.clarin.eu/
https://www.dariah.eu/
http://ucrel.lancs.ac.uk/bncfreq/flists.html
http://www.gutenberg.org/wiki/Gutenberg:The_CD_and_DVD_Project
http://johnvidler.co.uk/academia/cmlc-2014/
https://spectreattack.com/

Chapter 4

Design

Fundamentally, what seems to be missing from the available interactions, both on normal

general purpose hardware as well as specialist hardware (such as GPUs, FPGAs, and others)

is the ability to describe communication paths in anything other than a one-to-one relationship.

This limitation presents problems when, for example, the application in question wants to

send data to multiple receivers. While this is more than possible using pipes and middlewares,

there always remains the problem of mediating those connections manually at the application

level.

Rather than encoding the semantics of the interactions in the processes themselves, an

arguably better alternative approach would be to encode the interactions in the system itself, re-

leasing the processes to be simple data-flow processors, rather than having to also deal with the

connections. What follows here is the an attempt to describe the idealised interactions between

processes, and how this would function with no restrictions imposed from hardware or software

constraints. As such, this should be viewed as the design target for the subsequent chapters,

but moving beyond this design real-world problems will have to be taken into consideration.

4.1 Outline

As we have so far seen, at the most basic level, current process interactions trend towards a

1-in, 1-out model - UNIX pipes being the classic example for this - and while this is extremely

powerful, allowing processes to be connected together, it does limit what can be done when the

interaction requirements fall outside this 1 in-and-out degree model.

Therefore, let us presume a mechanism whereby processes can interact via n-in and n-out

paths; in this case, the possibilities expand to encompass far more interactions. Multiple passes

through a single instance of a given process cease to be a batch operation requiring that the

pipeline be re-instantiated for each pass, and become a looped link from one process to itself;

multiple input sources to the same process graphs become a simple additional input process

57

4: Design Design Concepts

and new link, rather than having the entire tooling repeated.

Ultimately, the goal is to avoid the need to represent non-linear communication paths as

sequential linear process chains.

4.2 Design Concepts

To provide a mechanism through which messages between processes can be marshalled with

similar techniques as used for networks at scale, it makes sense to separate the routing of the

messages from the nodes sending the messages in the first place. Without this separation, it is

difficult to control the network as is required.

From a design purism point of view; each process is modelled as an n-degree node, each

arc connecting to each other process by a unidirectional link. The machinations of how this is

actually achieved may differ from this - take for example the case where links are on different

hosts, in this case there must be at least one network link between the two devices, but to the

application nodes this is not seen as any different to a local link, in much the same way that

sending a network packet from one host to another may actually go by any number of paths, but

to the processes at either end, the transfer is seamless.

This is a divergence from normal POSIX36 or System-V37 interface whereby any connection

between two processes (virtual or otherwise) is modelled as a bidirectional link. This is signi-

ficant for two reasons, one; the semantics of the upstream link need not be the same as the

downstream link, and two; the process may never require there to be a bidirectional link at all.

Process

O
ut

pu
tC

ha
nn

el
s

In
pu

tC
ha

nn
el

s

Figure 4.1: A simple view on a given process from a connec-
tome, note that links are directional.

4.2.1 Asymmetric Network Links

An interesting characteristic of symmetric network links in IPC systems is that they, by topology,

negate certain connectivity options. Taking a bidirectional link and attempting to handle multiple

receivers quickly leads to routing complications requiring various forms of message tracking and

routing overheads. Rather than deal with this, this design uses simple unidirectional links, and

in the case where bidirectional communications are required, two such unidirectional links can

58

4: Design Design Concepts

be constructed in the network graph.

4.2.2 Unidirectional Network Links

The original inter-process links were modelled around the same concepts as serial links in early

computers; byte-per-byte transfer and bidirectional, but this is no longer required to be the case.

Rather than have a full bidirectional communication link between nodes in the network, having a

single unidirectional link paired with a minimal flow control back-channel provides a far simpler,

but in practice, no less capable link. Indeed in many applications, the transfer bias for any given

link will be tilted one direction or another. with a serving-node providing overwhelmingly larger

amounts of data than the receiving peer, for example.

This particular design is somewhat borrowed from schemes such as MPLS38, whereby

network routes are specified before they are used, eliminating the need for the routing layer

to calculate the next hop for each packet, relying on a precomputed destination list based on

the source of the packet at each hop in the stream. In both the MPLS case and here, the

packets still do contain the destination address allowing routers to perform destination routing,

but in reality, knowing just the source address is enough to perform a look-up for the entire route

at any step; if the source is ‘X’ then forward to port ‘Y’.

As this design follows macro-network design themes fairly closely, the mapping between

micro- and macro-operations offers the possibility of using LAN (or larger) hardware to handle

the routing roles currently embodied in the software routing component.

For example, Multiplex and Map operations can be achieved at the packet level via multicast

groups; clients joining a multicast group receive broadcast packets by default, but many routers

do support anycast on a multicast group, picking a target from any of the connected clients.

Furthermore, the broadcast messages (to a given group) provide the same distribution as the

Map operation, forwarding a copy of the message to every connected client - and as both of

these operations are supported by hardware acceleration in the routers themselves (in many

cases, although indeed, software routers are still numerous) the throughput over network links

should still remain high, despite the operations being encoded within.

It should be noted that while multicast groups offer the best way of describing the required

behaviour for Map operations, the original IPv4 ‘broadcast’ mode format would also achieve this,

although through a much broader brush. Every connected client would receive the forwarded

message, with no filtering at the local level, restricting the switch or router to representing a

single Map operation, rather than being able to support multiple parallel, but independent Map

operations.

All of the LAN networking components, however, are secondary to the internal inter-process

‘wiring’ that this design primarily addresses, but the design similarities are referenced here for

59

4: Design Architecture

completeness.

4.3 Architecture

In the next few sections, some discussion of the architectural design and decisions of individual

components of the system are discussed.

4.3.1 Stream-based approaches to Data flows

Rather than taking a data-oriented approach to dealing with large input data sets, the GraphIPC

design takes a stream-oriented approach instead.

In large scale networking, it is not uncommon to use schemes which take all packets with

a particular field value and route them based on a pre-loaded policy, such as is the case for

MPLS.

This design pattern can be leveraged to route messages in the graph network without the

transmitter having to know the destination in advance, simply blindly transmitting to the router

and leaving it to handle the actual foward lookup and path. This greatly simplifies the packet

and node software design.

The other end of this means that the receiving node will have a source address but no

destination to key its actions from, resulting in nodes which have behaviour effectively defined

by their route rather than their address, somewhat blurring the lines between the router and the

end node.

4.3.2 Router

At the core of this design is the router - as might be expected, this component actually performs

the forwarding operations needed to actually get packets from source to destination, but further

to this basic requirement, the router (or routers, in a multi-router configuration) are the only

components in the graph which have the network connectome. While clients aware that the

network is present may also record their own paths for internal bookkeeping, the router(s)

are the only component required to hold the network edges (functionally, the actual network

connections).

4.3.3 Nodes

Rather than referring to a the vertices of a communication network as processes - as they may

often be - instead they should be referred to as nodes, as they can also be virtual connection

points existing only in the configuration of some other component. This can most often be seen

in the router - cases where streams are joined together to be sent to a single endpoint are

60

4: Design Interaction with other Linux Processes

technically vertices unto themselves, but cannot be described as processes, despite having

some reception and forwarding capability.

4.4 Interaction with other Linux Processes

Providing a new method for interprocess communication is only as useful as its interaction

with existing tools, otherwise the entire system would have to be re-engineered to use the new

communication layer.

4.4.1 Tool Interoperability

Beyond the trivial interactions with corpus data, the methods for getting data in or out of a

storage system become increasingly complex. Data coherency is one area where these issues

are particularly prevalent, but another equally important area is that where the stages in a data

transform sequence meet.

Large frameworks work around this issue by mandating a single data transfer format, usually

with meta-data that includes the specifics. However, moving beyond the bounds of a given

framework often requires handling the format changes at the edges of the tools in question, and

that quickly becomes difficult (at best) to manage effectively. There are even cases where the

tooling agrees on an particular data format, but the encoding within that format differs, resulting

in wildly inaccurate results.

As part of an exploration of this problem space, a partial solution to the encoding and

formatting problem became evident. By embedding additional structured data inside existing

data formats, it become possible to include the otherwise missing properties required to handle

the formatting transforms to allow tools to interact.

In the experiment, this was achieved through the use of a tool-wrapping-tool which attempted

to validate that the data that was being passed to the enclosed process was in a format that the

tool could accept, or at least, to explicitly reject any attempts to input invalid formats.

Taking this concept further, it became evident that it should be possible to perform some of

the transforms at the edges of the wrapped processes automatically, provided that the data

could be streamed in such a way that performing the transform would make sense at all.

Naturally, if the particular format requires that all data be transferred before processing can

begin, the memory overheads in doing this are going to be quite high - consider a graph-type

node/edge storage medium, requiring all edges before the graph can be built - but simpler

incremental formats should be possible to do in-stream.

61

4: Design Interactions

4.4.2 Structured vs. Unstructured Data

When importing or exporting data, a process can use any number of different formats, but

irrespective of which particular one is chosen, they will fall in to one of two categories; either

structured data, or unstructured data.

Unstructured data is both the easiest to understand, and (possibly therefore) the most

common form seen. Comma Separated Value (CSV) records are common, using a predefined

symbol as a field delimiter, and relying on the receiving end agreeing on the field offsets to

ensure that the correct data is transferred.

field1,field two,"quoted string field"

test,line1,line4

Figure 4.2: An example of a CSV file - note that the field
definitions are unknown for any given ‘column’, and would
require further data to correctly parse.

However, because of the inflexibility and ambiguity of formats such as CSV, there is an

increasingly popular trend to encapsulate all transferred data in structured formats such as

XML[55], YAML[18], JSON[16] and others. These structured formats have then themselves

spawned other efforts to wrap the structure in to binary formats - BSON[24] and Message-

Pack[20], for example - to save on bandwidth and parsing between programs, rather than the

original human-to-machine interaction that they were intended for.

JSON:
{“field1”:true,“field2”:0}

MessagePack:
82 a6 66 69 65 6c 64 31 c3 a6 66 69 65 6c 64 32 00

Figure 4.3: A simple message encoded in both JSON and
MessagePack formats. Note that the MessagePack data is
hex-encoded binary, with whitespace added for clarity.

4.5 Interactions

As the design presented here is a superset of the traditional UNIX pipes system, processes

designed to work in such an environment can be fooled into using the graph network the same

way, invisibly (to the process) receiving data along the more complex paths. To support these

processes, a number of discrete operations are required, as the functions they provide are

not possible with the ‘bare’ UNIX processes; these include the now common Map and Reduce

primitives, but also describe Mux, Demux and Bus operations. These together form all the basic

requirements for communication in the graph without requiring that the process does anything

other than handle regular UNIX pipes.

62

4: Design Interactions

The differences between some of the individual operations can appear subtle, as they do

extremely related things, but do so on different aspects of their inputs. Map and Reduce do

not preserve the addresses of the input packets, instead performing their respective operations

on the data as though the output is a single input or output stream, as seen by connected

operations. By contrast, the Bus, Mux and DeMux operations preserve the any addressing, but

determine the internal routing requirements of the flows - performing each particular mapping

operations without altering the data. The precise function and reason for this distinction will

become clear as each is discussed.

In some exceptionally rare cases it may be useful to perform one or more of these operations

without there being a particular processing function - load balancing may be once such case.

In these instances, the operation is done in the network, effectively being applied by the router;

although technically it could be applied as a form of pseudo-process, whereby it exists as a

node in the graph, but does not have a processing function; a blank process, if you will.

However, doing this in the network itself in cases where software routers are being used

- including the host-internal router, even in cases where it exists as a kernel module - should

be discouraged, as it will place processing loads on the router, potentially lowering the overall

throughput of the graph as a whole as the router deals with the received data and logic. If,

alternatively, this is implemented as a hardware device - either host-locally as a specific piece

of switching hardware, or externally as a discrete router with special hardware - the throughput

reductions may be undetectable due to the hardware support, so could be used in these cases.

4.5.1 Bus

Figure 4.4: The most basic operation of a node in the graph,
bus takes each substream in, processes it independently, then
forwards it out on its own substream

Perhaps the most straight-forward operation, the Bus operation (see Figure 4.4) takes any

number of input streams and maps them to an identical number of output streams - this has the

effect of applying a unique instance of whichever user process is being used to each individual

stream, where the data and environment is entirely isolated from each other. Note that this

63

4: Design Interactions

does not inhibit the processes from communicating over other means (database connections,

sockets, etc.) but merely ensures that they are logically isolated for the purposes of the data

flow.

This is particularly useful for cases where the process being used is sensitive to continuous

data streams, and would produce erroneous data if the input stream data was to be interleaved.

By contrast, running multiple streams into a single process would result in interleaved data from

each (with the order based on their arrival time), which while fine for processes that operating

on discrete data, in cases where the process in question requires continuous data the output

would likely be meaningless.

4.5.2 Map

Figure 4.5: The map operation takes a single stream input,
and applies each discrete message to its own processing
function, before emitting each along their own substream; new
streams are created on demand until there are enough to
handle the function processing delay and packet input rate

The Map operation (see Figure 4.5) takes a single input stream, and attempts to take

each discrete message received and apply it to an isolated processing function, creating new

instances as required to accommodate the input rate. Map expects that the processing function

emits messages at unity with the messages sent to it - one-in, one-out - this is required to

allow Map to determine if the function is overloaded, and if more should be instantiated to

compensate. The output data remains on a unique stream, (unmangled), allowing subsequent

processing on separate isolated streams, although the precise stream-to-process mapping and

longevity of each stream is not guaranteed, as the Map function may elect to set-up, tear-down

or re-use any given processing function.

As this operation requires information about the process it is forwarding to (now to start, stop

and detect completion) the Map operation will always be created as a node in the graph. If it

were to be created in the network, without a proper node, it would lack the context to be able to

perform the operation correctly - lack of a target instance-type would render this impossible.

For practical reasons, the upper and lower bound for the number of possible instances will

64

4: Design Interactions

likely have to be specified in software, otherwise high throughput data going to long-running

processes would quickly result in very high loads as many processes would be created to deal

with the stream data.

4.5.3 Reduce

Figure 4.6: Performing the complimentary operation to map,
reduce takes any valid substream and applies it to a single
processing function in the order the packets are received,
emitting all resultant data on a single stream (with the nodes
address as its’ source)

Reduce (see Figure 4.6) performs the logical opposite, complementary operation of Map,

taking multiple streams and applying them to a single processing function, preserving the routing

data with each packet (so each flow remains ‘unmangled’)

4.5.4 Mux (or ‘Multiplex’)

Figure 4.7: The mux or ‘multiplex ’ operation performs a
variant of the reduce operation, taking any number of (valid)
substreams and inserting them into a single output stream in
the order they are received.

Multiplex (Mux) operations perform the opposite of Demultiplex (DeMux), taking messages

from a single stream and dividing it over a number of outputs according to a distribution policy.

Like DeMux, this operation explicitly mangles the messages received, and as such also must

treat data as discrete packets, as otherwise the distribution would make no sense without

65

4: Design Address Range

additional data; sequence numbers, for example, might be used by applications to track the

‘real’ order of the packets, despite their re-ordering mid stream, but are beyond the scope and

control of this particular design, and should only be present in a higher-level protocol.

4.5.5 DeMux (or ‘Demultiplex’)

Figure 4.8: The DeMux or ‘Demultiplex ’ operation is a variant
of the map operation, whereby a single stream’s packets are
distributed over a number of output streams, as defined by the
node configuration and forwarding policy.

The demultiplex or DeMux operation takes disparate input streams and attempts to push

them all to a single output. This is distinct from the Map operation, as whereas map preserves

the address data with the messages, the DeMux operation explicitly mangles the destination

addresses of packets received, replacing them with a pre-set target address.

This has the function of making it appear (to the target process) that the messages all came

from the same source - a useful case for where the process does not want to differentiate

streams, or is unable to handle multiple streams directly. Naturally, this will only work for discrete

messages, as the order that packets are received by the target will be highly dependant on the

order that they are received at the DeMux.

This is one of two operations that make particular sense to also support in the network

infrastructure itself, without the requirement for an actual node.

4.6 Address Range

The Linux kernel identifies processes by a Process IDentifier (PID) which is really just an alias

for an unsigned integer with a device-dependant bit-width. Normal Linux installations will use

15-bits by default, resulting in an upper bound of 32,768 PIDs; this figure, however can be tuned,

and the actual upper bound can be set as high as 22-bits, or 4,194,304 PIDs.

As both of these figures fit within a 32-bit unsigned integer with space to spare, we can, in

theory, map addresses for nodes in the graph to their actual PID in the system - this would be

especially useful should the user need to find which process was which node. This does fall

66

4: Design Summary

down, however, when sub-streams for wrapped processes are introduced, as they often run as

multiple instances of an inner binary, so knowing the PID of the node maps to the process PID

of the node only gets you the wrapper, not the actual process.

In theory, it would be possible to set the sub-streams PID to match the GraphIPC expected

values, but doing so would require modification to the underlying kernel, or arbitrarily moving the

node addresses around to match. It is a far simpler solution to use the kernel-assigned PID as

part of the node address, and maintain the reference that way without resorting to other, more

fragile mechanisms to do the reverse.
078

Router Prefix Node Address

Unfortunately, this addressing scheme breaks down for cases where a single process (one

aware of the GraphIPC network) exposes multiple streams, and thus addresses. In this case

the source node address would be forced to be all the same if it were mapped to the PID of the

process itself, limiting the possibilities for multiple output streams, so while convenient in some

places, this design may ultimately hinder the network.

For this reason alone, a basic sequential numbering scheme is instead used with an 8-bit

shift offset for the graph processes, such that they each have access to the bottom 8-bits for

sub-stream addresses.

4.6.1 CIDR Compatible Notation

For both cases of address schemes, the 32-bit addressing conveniently aligns with CIDR dotted-

quad notation. This is useful from both an ‘understanding’ and ‘logical’ point of view, as it allows

for easy expression of graph node addresses, and aligns with the 1-byte reserved section of

each node address for sub-streams, as shown in Figure 4.9.
07832

Node-Scope Address
(May actually just be sequentially created at the router)

Sub-Stream
(Defined by the node)

Figure 4.9: A suggested address component allocation, al-
though not required for the design to work, having an agreed
upon format and scheme for addressing does greatly simplify
understanding what the graph is doing.

4.7 Summary

To reiterate the beginning of this chapter, there appears to be a gap in the current methods

available for communication between processes in configurations outside the traditional linear

interconnections. This missing feature of inter-process communication systems is present

67

4: Design Summary

throughout all levels in the system, spanning as far as networking hardware, where it appears

as capabilities of the routing hardware, external to the local machine.

With the increased complexity of the local run-time environment both for server applications

and workstation use cases, there is a pressing need to address this gap, as the capabilities of

the larger-scale networks are increasingly useful in the micro scale.

Taking cues from the macro-scale networks in production as well as the local interconnec-

tion schemes seen in various operating systems designs, this new inter-process communica-

tion design takes advantage of their general schemes, while also attempting to minimise the

overheads inherent in re-implementing the full gamut of capabilities available in macro-scale

networking equipment - most of which is of limited use at the micro-scale and would in effect

simply reduce the overall throughput for the inter-network as a whole.

The implementation as described in the following chapter is a user-process level implement-

ation, allowing the entire framework to be executed in user-space on a modern (kernel version

4.16.6 or newer) Linux-based system, but the design presented here could be translated down

an abstraction layer to a kernel module with relative ease. The sole reason this has not yet been

done (as of the time of writing) is that the development cycle in doing so would be dramatically

slowed, limiting the exploration and testing of the overall scheme.

68

4: Design Summary

Footnotes

36The full POSIX API http://pubs.opengroup.org/onlinepubs/9699919799/toc.htm

37System-V IPC API http://www.tldp.org/LDP/lpg/node21.html

38MultiProtocol Label Switching, the working group for which can be found at https://tools.ietf.org/wg/mpls/, tags

packets with ‘labels’ to identify stream or routing semantics.

69

http://pubs.opengroup.org/onlinepubs/9699919799/toc.htm
http://www.tldp.org/LDP/lpg/node21.html
https://tools.ietf.org/wg/mpls/

Chapter 5

Implementation

At the core, GraphIPC takes a number of Nodes (each, a graph-aware process) and connects

them together using a Router to marshal the messages between each Node. Thus; from the

perspective of any given Node, the network appears to be a peer-to-peer form graph, with each

node connecting to each other directly, whereas in reality, each Node simply forwards to their

host Router (a graph-route-aware process to which nodes connect) which then connects the

dots between them.

One particular oddity of this implementation is that the network operates more like an Mul-

tiprotocol Label Switching (MPLS) system, where in this case the source address is the label.

the only components that know the routes that messages should take is the router, with nodes

simply emitting data tagged with their own address, rather than the destination.

This, while odd by the standards of today’s networked systems, does have significant ad-

vantages both in terms of limiting complexity at the nodes, and distributing workload somewhat.

With the lookup operations on the router defining the flow of the data - performing a lookup

actually provides the process with the context to forward the data, rather than performing any

form of mask/matching as per ‘normal’ IP-based network traffic (for example).

This is not to say that the nodes in the network cannot know where the data is going, quite

the opposite, as the nodes themselves are able to request that routes be added, removed or

otherwise altered (priority, policy, etc.), but that they do not by default need to know how their

data is being handled.

5.1 Overall Architecture

The overall architecture of GraphIPC is similar to the normal message passing IPC methods in

traditional Linux operating systems. The illusion that GraphIPC presents is that each process

is communicating directly with the target without interference, but the reality for this is quite

different due to practical concerns of the design.

70

5: Implementation The ‘Router’

As in the regular IPC methods used on Linux systems (Both POSIX and System-V) the client

processes connect to one another through a routing layer, a function which would normally be

hidden inside the Linux kernel, but in this case, the router itself runs as a user space process

as well.

From an architectural point of view, this is interesting for two reasons; firstly it means that

as the router can be implemented as a user-privilege process, other router implementations

are possible with specific goals in mind, and secondly, combinations of interacting routers

are possible with varying privilege levels, as required. This effectively leads to a form of

pseudo-graph-namespacing, whereby which router the process connects to dictates its ability

to communicate with other processes (via mediating the routing stages).

In future developments, it is the intention to move the router down into the kernel as a

full module, and have it communicate with clients via automatically generated Berkeley (file)

Sockets, but its operation in either case will be the same; the only advantage to being a

full kernel module is a reduction in kernel boundary crossings, which on a CPU affected by

Meltdown and its subsequent patch should make a significant performance difference.

Even so, with the additional copy and buffering operations inherent in an approach based

solely on user processes, the maximum throughput for any given NLP tool is generally quite low.

Concordance line generating tools are likely to have the highest throughput, as they perform a

simple sliding window at the word level to generate lists of concordances, but even in this case,

the ‘wire speed’39 from GraphIPC is so much higher (See section 5.3.2.1 for the experimental

enumerations for this) that the losses involved in the additional copying and transfer of data are

rendered irrelevant overall.

5.2 The ‘Router’

The router acts as a kind of IPC switching and routing device - each message is examined for

the source address, then the corresponding target is determined before the packet is sent to

that address.

The connections to the router do not map directly to nodes in the graph, rather they expose

a kind of ‘physical connection’ style mechanism, whereby processes can connect to the router

to configure it, but not participate in the data flow in the graph (or subgraph) itself. Routers can

also be connected to one another, each holding an internal representation of their subgraph

zone, along with routes out to remote (connected) routers; naturally, in this case, the routers

themselves are concerned with the data flow along the graph arcs, but they themselves do not

participate in the data flow, simply shuttling information around.

71

5: Implementation The ‘Router’

5.2.1 Routers All The Way Down

As a router holds a copy of the local subgraph, as with macro-network routers, this means that

routers can also interconnect with one another. This is interesting for a number of reasons;

one, as previously described, is that the routers can be used for a form of graph-namespacing,

whereby only subgraph-local processes can route data to particular addresses (others in the

local subgraph).

In Figure 5.1, this is graphically demonstrated with a pair of routers connected to one

another, each handling a subgraph of the overall graph network. Note that although only a single

link is shown transitioning between the two zones in this particular graph, the network could quite

easily have multiple paths to get through to the second router (a graph with higher connectivity

would demonstrate this). In actuality, the connection between the two router processes would

be a single link, as there would be no need to connect multiple times to each other, but the

virtual paths overlaid on that single link could easily be numerous.

Figure 5.1: Two separate routers acting as a single graph.
Each independently controls their zone, which can be mod-
elled as a single large-address-space node for the purposes
of forwarding and addressing.

The implementation presented here is written in plain C (compiled on gcc 7.3.0), as it is

the intention that beyond the scope of this initial proof of concept instance, the router process

would be brought down to that of a kernel module, and the user-space libraries would be

implemented directly as system calls. Furthermore, by sticking to C99-compliant standard C, it

is fairly straight-forward to implement wrappers for other languages, as the interfaces to C are

extremely mature and expressive. To enable a simpler, faster development cycle, the router

code has been implemented as a user-space process - this allows the full suite of development

and debugging tools to be used to construct the binaries in a safer, more robust manner. This

72

5: Implementation The ‘Router’

also allowed development to continue without requiring significant virtual machine setup or host

kernel alterations (potentially resulting in an unstable host system, while work continued).

Figure 5.2: The internal (high-level) architecture of the Graph

binary. The inner processes are wrapped binaries which can
run unaware of the GraphIPC network

5.2.2 ‘Nodes’ and Binary Wrappers

Nodes in the network represent individual endpoints to and from which streams can be routed.

The illusion this gives is that the processes are directly communicating with each other, when

they are in fact, communicating via their resident router, which determines where the stream

data should be forwarded to.

As the nodes do not actually know which destination node their data should be directed to,

stream packet headers only contain a source address (the node’s own address) and the router

itself fills in the destination when it receives the message, based on the declared links and

forwarding policy.

To avoid the need to re-engineer each program to use the new IPC mechanisms that Graph-

IPC provides, it would be useful to wrap any process in a GraphIPC aware subshell-like en-

vironment, from which communications with other GraphIPC processes would be possible. As

many Linux/UNIX processes use standard in and standard out (stdin/stdout) as their primary

source and sink for data, it was possible to capture these streams and hand the data off to the

graph without any modification required to the programs themselves. So in addition to the basic

standard input and output bridge modes available with the prototype Graph binary, it is also

able to fully enclose a subprocess, and with this modifies the inner processes’ environment to

capture the standard in and output streams, creating a graph-unaware, but compatable process.

Naturally, if the processes themselves wish to take advantage of the availability of a Graph-

IPC network, the process would have to link the libraries directly, but this allows for rapid

integration of other binaries. This is especially useful for the initial and final nodes in a graph, as

often the data sources and sinks beyond the GraphIPC network have their own driver programs,

which rather than having to be rewritten, can be used as intended by their developers, but with

a source or sink from the graph network. The simplest form of this is the use of cat, echo, head,

73

5: Implementation The ‘Router’

tail40 and similar to input or output data from the network.

5.2.2.1 Graph or Graph --bus

As the network supports more than simple single-path communications, there are some con-

cessions to be made for this to operate without mangling the streams. The default mode for the

Graph binary is the --bus operating mode; in which the wrapper will spawn as many processes

(on demand) as it has unique input streams, and will output as many output streams as it has

sub-processes. This is a design form identified in section 4.4.

Figure 5.3: Graph in Bus Mode. Each unique input stream
maps to a unique, corresponding output stream, such that
individual data sources do not intermingle or interleave.

This is the most common operating mode, as a many wrapped processes will be unable

to handle data from multiple sources, and the only way to ensure data stream integrity is to

completely isolate one stream from another. By creating a new process for each unique stream

ID on the input of the --bus option does tend to create rather heavyweight processing on the

host running the graph, as entire, independent processes are created for even the smallest

amount of data sent to a new stream address, so while it is possible to execute in this manner,

a more graph-aware process performing this kind of operation would be preferable; ideally, one

which handles longer packets as work units, otherwise there is the risk that each byte is handled

as a new job, and thus a new process is spawned.

Furthermore, this is the easiest mode to understand, as it has no side effects involved with

merging or splitting stream data in any way, but also conversely is the least graph-like operation,

as the replication of processes could be achieved through the traditional Linux pipe mechanism,

as demonstrated in Figure 5.4.

5.2.2.2 Graph --map

Whereas the --bus operating mode performs no stream mangling whatsoever, --map (explored

in section 4.5) by contrast, takes each message pushed to the single node address - irrespective

of source address - and runs each message in its own unique process, launching the process as

74

5: Implementation The ‘Router’

Figure 5.4: Bus mode vs. equivalent Linux Pipes

required as depicted in Figure 5.5. This can be an extremely expensive operation to perform for

sub-processes which have significant memory, processor or start-up time overheads, as each

time a message arrives, the entire setup-process-teardown cycle will need to occur.

To combat this for sub-processes where each input is treated independently anyway (where

the data is entirely independent between transactions) the --map mode can be given the --persistent

flag, which will cause the node to re-use any sub-process that has completed a transaction

(transactions in this case are defined as one-in, one-out with regard to packets, so any process

not conforming to this will cause problems) only spawning new sub-processes if the volume of

input data exceeds what can be processed with the existing sub-processes, up to a limit as

defined in the configuration or 255 sub-processes, whichever is reached first.

Figure 5.5: Graph in Map Mode.

75

5: Implementation The ‘Router’

5.2.2.3 Graph --reduce

While − −map ignores the input stream identifiers, regarding anything on its input as a single

stream and processing each packet transaction separately, − − reduce performs the comple-

mentary operation, essentially doing the reverse.

− − reduce operations take each input stream, and spawn a sub-process to handle each

unique input stream, then whenever a sub-process emits any data, the streams are combined

in to a single output stream, appearing to come from a single address - namely, the node’s own

address. The model for this was discussed in section 4.6.

Figure 5.6: Graph in Reduce Mode

This node operation is mainly useful for any application which includes a final collation

phase of any kind, taking the data and combining it into a single output for storage, or further

processing where knowing the path is no longer important.

Note that --reduce is subject to the same sub-process count limits as --map but each node

can be independently configured from one another.

5.2.2.4 Graph --mux and Graph --demux

During the development of --map and --reduce it became clear that there is sometimes the

need to perform similar stream operations without there actually being a processing step - simply

discarding the stream identifiers at one side or the other of a no-op operation.

To this end, the --mux and --demux (see sections 4.7 and 4.8) operations were created to

fulfil this niche; --mux or multiplex, takes a single stream input on the node’s address and emits

it to any connected nodes in a manner dictated by the output operating mode. --demux also

known as the demultiplex operation, does the reverse, accepting any sub-stream message as

an input, combining them to a single address (the node’s) in the order that it receives them.

Both are relatively simple ‘utility’ functions, but they can make a real difference both in terms

of actual performance by cutting out the need for additional sub-processes for simple operations,

76

5: Implementation Networking

Figure 5.7: Graph in Mux and DemuxMode

and for situations where the graph reaches higher complexities, as the operations are easily

understandable for workload designers.

5.3 Networking

Fundamentally, GraphIPC presents a kind of local-only network through which processes com-

municate in packets; so, rather than attempting to mask this, the discussion here will simply

treat the network as such, and describe its implementation in networking terms.

5.3.1 Asynchronous Messaging

By explicitly declaring that the messages in this network are asynchronous, we avoid several

problems. Firstly; if synchronous messages were possible, processes involved in cyclic net-

works could potentially lock up completely as the ring of processes all wait for a response from

each other forever.

Figure 5.8: Cyclic graphs can cause deadlocks if messages
are synchronous

Detecting this kind of deadlock can be tricky, especially if the messaging is not all using the

same method to communicate - a scenario involving UNIX pipes as well as GraphIPC would

77

5: Implementation Networking

break any subgraph modelling designed to avoid the deadlock scenario, as the UNIX pipes

would be effectively invisible to the subgraph analysis stage.

Secondly; even in acyclic graphs there would be form of ‘event ripple’ for every input mes-

sage, locking subsequent processes into lock-step with the slowest process. Assuming an

initial packet source that can supply messages as fast as a downstream consumer can process

them, at each stage, the slowest process would simultaneously halt all preceding message

transfers as the channel backs up, and any subsequent process would be starved waiting for

any messages from the slow one.

Figure 5.9: Synchronous messages can cause ripples of
process-halts to propagate over the network, as each waits
for the next in sequence.

While we cannot prevent the message starvation deeper in the graph (although parallel

processing and process duplication do address this somewhat), provided that the initial packet

source is not infinite, we can exhaust the source and remove it from active memory, leaving

only the messages ‘in-flight’ to track. Doing so will likely have consequences relating to memory

usage of the graph itself, but the savings on being able to tear down a process and it’s associated

resources may be useful in and of themselves.

5.3.2 Protocol

Figure 5.10 shows the structure of a graph network packet, and while the structure itself isn’t

mandated to be ordered, the listing here shows the actual order of the fields in the packet as

well, with only the addition of a free-form, schemaless payload after the length field.

Serialisation and deserialisation are handled as part of a packet library written for this project

which ensure that multi-byte fields have their endianness preserved across the connection to

the router.

The magic field is always transmit first and is used both as a frame sentinel, but also as a

fast way for any listening processes to discard a packet if the ‘magic’ does not match.

Also included is a version field, which should always be the same at both ends of any

given connection. This is included mostly as a sanity check for during runtime to ensure that all

binaries accessing the router are using the same version of the protocol.

78

5: Implementation Networking

1 /∗∗ GNW Packet header structure ∗/
2 typedef struct {
3 uint8_t magic ;
4 uint8_t version ;
5 uint8_t type;
6 gnw_address_t source ;
7 uint32_t length ;
8 } gnw_header_t ;
9

Figure 5.10: The gnw header t structure, which describes the
header of all GraphIPC packets

type defines if the payload data is raw data to be processed, or if this is a network internal

‘command’ message.

Commands are used to handle address negotiation and to configure the running router in-

stance for new connections, policy changes, and other parameters to control the graph network

as a whole.

The source field is a 32-bit unsigned integer following the schema discussed in sections 4.6

and 4.6.1, and is used to identify the packet source address. Usually this will be an actual node

address, but in some cases it may be a sub-address for a sub-process within a node.

By convention this will be indicated by the lower 12-bits being non-zero, as the default mask

is 0x00000FFF for node-local addresses.

The final field in the header is the length entry, which defines the length of the remaining

packet data, with a maximum of 232 − 1 bytes per payload. In most cases, this is actual data

to be passed on to either a child process (in the case of Graph wrapping a traditional Linux

process) or to be output by the node for further processing.

In the case of command messages, the data in these fields has special meaning for address

negotiation and responses, as well as the various parameter altering commands.

5.3.2.1 Digraph Storage and Performance

There are two generalised forms for storing a digraph structure in memory, and both have their

benefits and detractors for a given application; the edges can be embedded as a property of

the nodes (or visa-versa, with edges embedding the nodes, although this arrangement is more

rare), or as independent entity structures, one for nodes, one for edges.

5.3.3 Address Lookup Mechanisms

Initially, the approach chosen to handle address lookup in this implementation was to perform

a byte-level lookup for each byte of the address, most-significant-byte first. If the address fully

matches the stored one at this first stage, then the function can immediately return with the

context (as demonstrated in Figure 5.11), otherwise it progresses one level further in and one

byte deeper into the address - essentially performing a shortest unique prefix first lookup (as

79

5: Implementation Networking

shown in Figure 5.13).

Figure 5.11: The fast address lookup path through the address
data structures - the first level can reference the context for
the handler immediately, short-cutting the entire structure,
provided that the address field in the context entirely matches
the needle address

This structure also allows for shorter masked address lookups to refer to the lowest next-

level address in the structure, effectively providing a broadcast address which hits the first next-

refined address in the subsequent set.

This is useful for this particular design, as we use the /8 mask to refer to sub-streams within

a given node, leaving the /16 mask (the level above in the structure) to refer to the node that

contains said streams. As a node will always request an address before any of its sub-streams,

the shortest match will always be the host node, saving a lookup during the address resolution

stage of handling a received packet. Note also that this approach does mean that offsets in

each table are known and easy to compute (see Figure 5.12) such that each byte offset can be

directly known without any searching required.

(uint8_t)((lookupAddress >> (8∗(3−maskBytes))) & 0xff)

Figure 5.12: Computed offset in the local table, where ‘mask-
Bytes’ is actually the offset in the mask lookup table, for speed.

Generating the masks to perform this lookup was done often enough to make a case for

optimising the operation; to that end, an array of pre-baked bit patterns was used to reduce the

generation time for each mask (See 5.1, resulting in some minor speedup overall.

1 const uint32_t mask_lookup_table [4] = {

2 0 b11111111000000000000000000000000 ,

80

5: Implementation Networking

3 0 b11111111111111110000000000000000 ,

4 0 b11111111111111111111111100000000 ,

5 0 b11111111111111111111111111111111

6 };

Listing 5.1: Generated structures such as this mask lookup

table are used to speed up the lookup operations

Figure 5.13: The slow address lookup path through the
address data structures - this would only normally occur if
there were many addresses with very similar values, as by
the second level, the data is sufficiently different to specify the
handler without ambiguity

Each level of the lookup is represented in memory as an array of 256 elements, one per

possible byte value, which contain the current address mapping for this byte/mask combination,

and if required a pointer to additional sub-tables which do the same for a finer-grained byte

offset. As the individual tables are essentially plain in-order arrays, byte-level queries can be

performed extremely quickly, which contributes greatly to this approaches performance. Further

aiding the performance of this structure is that each table fits entirely within a memory page,

reducing the number of page table loads required to do each lookup.

Naturally, the trade off here is that the arrays are largely empty for sparse input sets, so the

overall structure is very space-inefficient. Some better memory efficiency could be achieved

with the use of a pointer arrays, rather than storing the state of each value in the array itself, but

in doing so it would introduce another indirect lookup to every level, which may adversely affect

performance in and of itself.

Overall, this structure achieves, an average ≈ 230 nanoseconds per address lookup - some

are naturally much faster, requiring a single lookup operation, others are longer requiring up

to 4 lookups. This means that barring any other factors, such as formatting the packet to be

sent out, or other internal processing delays, the absolute upper bound for throughput lies at

81

5: Implementation Networking

slightly over 4, 347, 826 lookups per second, which with an MTU of 1500 results in a theoretical

maximum throughput of ≈ 6.074 GiB/s (≈ 6, 521, 739, 000 B/s).

Naturally, this is a theoretical upper bound, and any processing delay inherent in a real

implementation of the router will cause this figure to drop, but as it sits so much higher than the

actual maximum throughput of the loopback interface, we can say that the address lookup time

is negligible with respect to the overall performance of the binary.

However, despite the successes of this structure and algorithm, it has one major drawback -

storage space. The size of the structure quickly becomes unmanageable for large address sets,

and as the lowest octet is used for substream addressing, performing lookups for anything other

than very sparse address sets quickly becomes at least a 3 stage process, if not a full-depth

4 stage lookup. At this point, the structure becomes no better than a balanced tree approach,

using the table model for graph storage.

Attempting to replicate in software what would be normally handled in particularly high

performance hardware in network routers - which as has been shown so far, can quickly be

doomed to failure by the memory requirements. Instead a more pragmatic approach was

ultimately taken where the addresses are stored in a hash table structure; a balanced search

tree implementation, with the intent to minimise the lookup overhead.

Figure 5.14: The hash address lookup sequence implemented
in the GraphRouter binary.

As shown in Figure 5.14, this structure may result in a slightly slower average case lookup

time, but will remain much more consistent when scaled up to large numbers of addresses. This

prevents the router from experiencing unpredictable jitter as lookups take unknown amounts of

time to complete.

82

5: Implementation Networking

1 /∗∗
2 ∗ Context for a given connection to a running node or subgraph−router .
3 ∗/
4 typedef struct {
5 kvec_t (gnw_address_t) forward ;
6
7 int forward_policy ;
8 int bound_fd ;
9

10 int state ;
11 uint64_t packets_in ;
12 uint64_t packets_out ;
13 uint64_t bytes_in ;
14 uint64_t bytes_out ;
15 } context_t ;
16

Figure 5.15: The content of a context structure for tracking the
connection and data for a single graph node

5.3.4 Forwarding and Policies

As this design requires that the router hold information about the network - rather than just a

set of known addresses - the routing software needs to be able to do both fast address lookups

and fast route lookups when messages come in. The messages themselves only contain the

source address, so cannot be forwarded in isolation. This means that each graph node in the

network needs to have a context held in the router containing all this required information.

The structure for this context data is shown in Listing 5.15; and beyond some amount of stat-

istics storage (the various packet and byte counts) the structure only tracks the current forward

policy, the file descriptor of the connection to the node this structure represents (although this

may be NULL for one which does not currently exist) and the forward list, stored as a vector.

The node itself, as represented by the Graph instance follows the general scheme shown in

Figure 5.16 for all messages received, with exceptions for when running as a bridge to normal

Linux standard input or output streams. This sequence has the messages demultiplexed, pro-

cessed in the sub-process the multiplexed on before being output to the connected GraphRouter

instance.

Figure 5.16: Subprocess Wrapping

Multiplexing simply works on source address addresses, and either operates as a noop

mode, which does nothing to the address before forwarding it, or alternatively it can operate

83

5: Implementation Binaries

in a merge mode whereby messages from multiple inner processes (if any) are masquerated

as having come from the node address itself. This is done in cases where is not desirable

for multiple processes to be invoked at the receiver, or where the precise source for a given

message is not required (as would be the case for a load-balancing situation).

Demultiplexing can operate in one of three modes, the first is noop, whereby no alteration

to the incoming source addresses is done before processing. In this mode, if an inner process

is needed to be spawned, a single one will be created and all messages will be forwarded to it

directly.

Its second mode, merge operates much the same as the noop mode, but in addition to

spawning a single inner process, if required, it will also mangle the message source address

before passing the data to the inner process.

In the third mode spawn the Graph binary will spawn a new inner process for each unique

incoming source address and forward the message to the new inner process. If an existing

process is already handling the source address, it will receive the new message without the

Graph binary spawning another.

In combination, the multiplex and demultiplex stages provide a number of unique operating

modes and give the user options for how to handle input and output data at each node, inde-

pendently of the router itself. As a side benefit, this also takes some of the processing load from

the Router, leaving it to handle address lookup and message forwarding alone.

In a kernel module implementation, the process context and socket ID can be tracked

together in process states, rather than independently as it presented here. In practice, while

the kernel module may involve more of the system, the actual implementation of processing the

messages may be simplified as the kernel has direct access to the socket buffers in use, so can

use them in-place rather than having to buffer independently.

The buffer itself is a fixed-length simple flat buffer implementation, which prevents the work-

ing set (in RAM) from growing during operation, and eliminates any allocation or deallocation

delays which may occur due to the system implementation for heap management (malloc/free).

This forwarding lookup is structured quite differently from the address lookup, as the for-

warding operations require that sequential fast access is maintained as often as possible.

Consider round-robin routing policies, whereby each individual packet needs to be forwarded to

a new endpoint - for this case, the list structure for the forwarding lookups is ideal, as the next

cursor can be maintained between packets, only progressing when packets are forwarded. This

approach results in a nearly O(1) lookup complexity.

84

5: Implementation Binaries

5.4 Binaries

There are only two binaries for this project - excepting the unit testing framework - Graph and

GraphRouter. GraphRouter initiates and controls a host’s IPC router, while Graph creates,

wraps and configures nodes in the graph.

The command line parameters and switches these support are available through -h and

--help on either binary, but are reproduced and expanded upon here for context in the latter

chapters. Note that many of the parameters have both a long and short form; when this is the

case, both are specified in-line here.

5.4.1 GraphRouter

The userspace router for GraphIPC messaging

--status

Request a status message from a running router instance. This will attempt to connect

to any running router instance and cause it to report a number of statistics on its current

operations.

--policy

Change the link policy between a source and a target. This requires that --source and

--target also be present on the command line to determine the arc in question. At the

time of writing, the valid policies are ‘broadcast’, ‘roundrobin’ and ‘anycast’.

--connect -c

Connect a source to a target, with the default (broadcast) policy. This requires that there

by a --source and --target also present on the command line.

--disconnect -d

Disconnect a source from a target. This requires that there by a --source and --target

also present on the command line.

--source -s

The source address of the arc to modify. Must be a valid node address.

--target -t

The target address of the arc or node to modify. Must be a valid node address.

--mtu

Force a particular MTU - setting this too high may cause excessive packet loss if your

hardware is unable to handle the load. This will default to the loopback interface MTU on

the host, or, if this is not available to be queried, will use 1500 bytes.

85

5: Implementation Binaries

--dot

Output the graph in DOT format periodically, rather than status messages or the address

table. This is mostly just useful for debugging, and renders the entire graph in DOT

notation.

-v

Increase log verbosity, each instance increases the log level (Default: ERROR only). Must

be called first to have effect on subsequent operations called by other parameters.

5.4.2 Graph

Wrap a normal Linux process stdin/stdout pipes with GraphIPC connections to a GraphRouter

process Allows non-compliant programs to be used in a graph

-h --host [host address] and -p --port [port]

Defines the GraphRouter host address and port. When multiple routers are run locally (not

recommended, as this splits the local graph) this allows the Graph process to select which

router to use. By default this will use the first local router it finds. The current prototype

only supports single-homed routers, where there is a single router on each host, each

controlling the entire local zone. If multiple routers are running on the same host, each

will have an entirely independent address pool, with no communication between the two;

quickly causing duplicate addresses to apparently exist.

-a --address [hex address]

The (requested) hexadecimal node address, may not be respected by the router. Cannot

be 0. Routers will attempt to satisfy this request, but if the address is already in use, an-

other address will be allocated automatically. The only other alternative to this behaviour

which would not negatively affect the current graph would be to simply reject the request

and have the client process quit, but for simplicity the current, fallback behaviour is used.

--immediate

Start running the inner binary immediately. By default wrapped processes are only started

on demand when data arrives

-v

Increase verbosity, repeat for increasing levels of detail. This should be specified early

on in the command line flags, as subsequent arguments may use the pre-existing value

otherwise.

--

Optional separator between Graph arguments and the inner binary. While Graph will

86

5: Implementation Summary and Future Developments

attempt to assume parameters beyond the binary definition are intended for the wrapped

binary, this argument enforces that any subsequent arguments are intended for the inner

binary.

-i --input

Executes Graph in ‘input’ mode, where any UNIX pipe messages sent on the standard

input stream are re-emitted by the Graph node.

-o --output

Executes Graph in ‘output’ mode, where any Graph messages are immediately written out

to the standard output stream, with the GraphIPC protocol bytes removed.

--mux

Configures the multiplex stage of the Graph binary, and will only accept ’noop’ and ’merge’

as values.

--demux

Configures the demultiplexing stage of the Graph binary, and will only accept ’noop’,

’merge’ and ’spawn’ as values.

5.5 Summary and Future Developments

The implementation presented here consists entirely of user-space processes, which while

useful for development, debugging and potentially (in production) deployment, does mean that

there are technically superfluous memory copy operations going on during communications, as

depicted in Figure 5.17a. The double kernel boundary crossing required by the sockets interface

(twice for a node to send to the router, twice again for the router to forward the message) will

have significant impacts on overall performance. The application space that the subsequent

tests exist in is only able to avoid this performance drop impacting the overall throughput as the

programs actually processing the data at each node have so much lower bandwidth than the

GraphIPC network that the losses in the system itself vanish into the noise floor.

In continuing this project, the next logical step is to move the entirety of this router design

down into a kernel module (See Figure 5.17b), removing one of the boundary crossings at

each transfer (becoming a user-kernel-user sequence, rather than user-kernel-user-kernel-user

sequence).

While lacking in some features, this example implementation of the GraphIPC design is

easily able to demonstrate the interactions possible with the overall model. One of the major

missing features is the ability to connect multiple routers together; this is largely due to the

problems of address-scoping for allocating new node addresses in each router - by default the

87

5: Implementation Summary and Future Developments

(a) User processes (b) Kernel module

Figure 5.17: Graphical representation of the kernel bound-
ary crossings involved in both the user-space and kernel-
module implementations for the router component. Bound-
ary crossings are generally handled through system calls in
normal Linux configurations, although mapped memory and
synchronisation primitives can also be used to achieve the
same affect with some implied, unpredictable latency (unless
executing as a RTOS kernel)

implementation here is only able to monotonically increment its next address - albeit by 256 each

time, as to allow for 255 sub-streams per node - and has no mechanism for address negotiation

within a collection of routers.

One possible solution in the simpler end of the scale would be to give the router itself a ‘zone

address’ which would act like a DHCP range for that given router, as well as potentially having

the router itself be modelled as a node - although doing so would have its own interesting issues

with representation, as routers are supposed to be effectively invisible to the nodes running on

them.

88

5: Implementation Summary and Future Developments

Footnotes

39The author notes that this isn’t what ‘wire speed’ actually means, but for the purposes of analogy it is useful in this

instance

40See http://man7.org/linux/man-pages/man1/cat.1.html, http://man7.org/linux/man-pages/man1/echo.1.html, http://

man7.org/linux/man-pages/man1/head.1.html and http://man7.org/linux/man-pages/man1/tail.1.html respectively

89

http://man7.org/linux/man-pages/man1/cat.1.html
http://man7.org/linux/man-pages/man1/echo.1.html
http://man7.org/linux/man-pages/man1/head.1.html
http://man7.org/linux/man-pages/man1/head.1.html
http://man7.org/linux/man-pages/man1/tail.1.html

Chapter 6

Evaluation

With the prototype implementation complete, the following sections detail a number of the tests

performed to determine both the performance available with such a system composed entirely

in userspace, in addition to describing the practicality of defining the more complex networks.

Initially however, some discussion of both the test environment (the machine configuration)

and the test software (the tooling) is required. In the latter sections of this chapter this work

turns to a more general evaluation of the system as a whole and how it fits in with other aspects

of processing workflows.

Overall the results in this chapter provide a mixture of complementary evaluations: quantit-

ative (described in sections 6.1 to 6.7), followed by qualitative and application based (described

in section 6.8).

6.1 Test Machine Configuration

The full hardware and software configuration the following tests were performed on can be

found in Table B.1, but in brief, the computer was an unmodified 2018 Lenovo ThinkPad T480s

with an Intel Core i5 8th Gen CPU running Arch Linux41 kernel version 5.2.11-arch1-1-ARCH

1 SMP PREEMPT with GNU gcc 9.1.0, and GNU make 4.2.1 with cmake 3.15.3 were used

to control the builds. The entire project is also known to compile against Ubuntu Linux42 via

Travis-CI43 builds, and although not tested in that environment, it should perform similarly, as

the configuration described here is fairly unremarkable.

6.2 General Methodology

With the exception of the initial baseline throughput tests (see section 6.3) the tests in this

section follow this general configuration:

1. Start an instance of the router (GraphRouter binary)

90

6: Evaluation Custom Tooling

2. Configure all forward paths and policies

3. Connect all output and monitor processes

4. Work backwards creating any intermediate processes towards each data source

5. Instantiate the data source, beginning the test.

Statistics on throughput, packet counts and several other features are collected at relevant

points throughout either via the graph network itself, or via tools such as pv (See section

6.4). This test cycle is then repeated changing a single parameter each time; common altered

parameters are the packet size and the number of packets to process.

To replicate any of the tests demonstrated here, see the GraphIPC/tests directory in the

project git repository44; each test is orchestrated from its own bash script, so can be executed

on any machine with the requisite tooling. Additional scripts include aggregation tools to build

processable CSV files for graphing and further analysis.

6.3 Throughput Limits

Internally, the GraphIPC prototype uses local sockets to establish the communication channels

between individual parts, therefore the absolute maximum throughput of the system is governed

by the maximum throughput possible for a local socket. In the specific case of the prototype,

this local socket is bridging two user-space processes, whereas in a kernel module based router

implementation, this would be between the Linux kernel and the graph-enabled processes.

6.4 Custom Tooling

To perform the tests described here a simple binary (ArgTest) was constructed to simulate

generating messages, as well as simulate processing messages mid-stream in predictable,

configurable ways.

6.4.1 ArgTest

To have a controlled environment for testing the performance and behaviour of the prototype, an

additional binary was created to simulate the behaviour of external processes in a predictable

way.

ArgTest is a very simple application which can perform the following operations:

• Generate messages of a fixed size with an arbitrary message delimiter.

• Emit messages at a fixed, known rate, with counting limits.

91

6: Evaluation Custom Tooling

• Emit messages when sent a message itself, optionally with a fixed delay.

All of these features are configurable from the command line, through the s,d,i,c and w

command flags, the definitions for which are presented here for clarity in the remainder of the

chapter where commands are stated:

-s [length]

Generate a length number of ′?′ characters as the message payload, these will be sent

with the addition of the delimiter string, such that the final payload will be length+delimiterLength

long.

-d [string]

Specify what the program should use as its delimiter string - this is only actually used for

emitted messages, whereas all incoming messages use a fixed newline ′′

-i [interval]

Define the interval either between messages, when free-running, or the delay between

receiving a message and emitting one ourselves if waiting for input. The value is in

microseconds (usec, or one 1-millionth of a second), although the exact precision of this

figure is determined by the kernel itself, as it relies on the system clock being accurate

enough to represent microsecond ticks. If this is zero, no delay is applied.

-c [count]

Sets the number of messages to be emitted from this process. To prevent run-away

processes, there is always a hard limit on the number of messages a single ArgTest

instance can emit, although as this figure is defined as an unsigned long, in practical

terms, the limit is beyond any required for testing (4,294,967,295 messages on a 64-bit

system).

-w

Wait for standard input to trigger emitting a message after interval delay. Input is buffered,

so if the input rate exceeds the output rate, all will eventually be sent, after the cumulative

delays expire.

6.4.2 pv from pv4science

As part of the evaluation of various programs here, there came the need to monitor features of

a regular Linux style pipe; the ‘normal’ tool for doing this would be pv which can be inserted in

a pipe-chain and will periodically output a number of statistics about the data flowing through at

that point.

92

6: Evaluation Standard Linux Pipes

However, pv is a tool designed for human-readable output, so automatically converts (with

significant loss of precision) to SI unit equivalent values (1400 bytes/sec becomes “1.4k/s” in

its output). To prevent this, I modified pv to inhibit this behaviour and have it return the raw,

actual long-double floating point values it internally uses, thus allowing for higher precision of

measurement.

1 15017.000000 0:00:01 15016.444392 15016.444392
2 31131.000000 0:00:02 16114.306172 15565.359912
3 46731.000000 0:00:03 15599.766004 15576.828655
4 61664.000000 0:00:04 14932.940268 15415.857403

Figure 6.1: An example of the modified output from pv in the
pv4science package; this particular example shows, in order,
Number of messages, Timestamp, Throughput rate in bytes
per second, and average throughput in bytes per second.

The code for this modified pv is available on GitHub at https://github.com/JohnVidler/pv4science

should this minor modification be useful to any other developer.

6.5 Standard Linux Pipes

To provide a baseline characterisation to both describe the test system and for comparing

GraphIPC, a simple test was run to transfer a fixed number of messages with an increasing

payload size using ArgTest. Taking these measurements and plotting them against one another

we see the a mostly predictable behaviour (See Figure 6.2).

Transfer Throughput vs Payload Size of Linux Pipes

Figure 6.2: A plot of the effective throughput for unix pipes.
The low-end noise is likely measurement error from the ex-
tremely small run duration for those tests. The upper ‘step’
is likely to be an increase in internal buffer size or transfer
approach causing the local increase in throughput. See also
Table B.2.

Of note however, is that at the low-end of the payload size, the transfer speeds are so fast,

and thus; the times taken to transfer the data so short that the accuracy of the measurement

93

https://github.com/JohnVidler/pv4science

6: Evaluation Local Sockets

drops off with the system’s timer resolution. Therefore, while the data does generally follow the

same curve, the precise values for payloads smaller than approximately 250,000 bytes (250 kB)

cannot be trusted completely.

This is a limitation of this kind of instrumentation, and is present in all subsequent tests in

the chapter, unfortunately. To mitigate some of this problem, an intentional 1 second delay was

added before each test is started but while pv is already executing to allow the timers to stabilise,

and payload sizes were chosen to start very close to the top of uncertain range.

Of further note is the sudden, marked increase in throughput at approximately the 1,320,000

byte-mark (1.32 MB) is extremely likely to be a doubling of the internal buffer capacity, as

the increase in throughput is almost precisely doubled (an increase of approximately 956.24

bytes/second once stable).

6.6 Local Sockets

As the prototype uses local sockets as a transport layer for messages, rather than a packet

based message passing interface to the kernel, there is a hard limit to the performance available

to the prototype, as defined by the maximum throughput capable on the test machine for TCP

sockets.

At the time of writing, no general characterisation of TCP sockets on loopback interfaces

could be found, so instead the following data was collected to characterise the link (barring

some error caused by the measurement tooling) and plot in Figure 6.3.

Loopback TCP Socket Throughput with Increasing Payload

Figure 6.3: Throughput via a loopback TCP socket between
two nc (netcat) instances on the same machine as all the
following tests.

As both ends of the communication were monitored, the difference between these can also

be plot against the payload size, rendering a view on throughput loss over the TCP link (see

94

6: Evaluation Forwarding Policies

Figure 6.4).

Loopback TCP Socket Throughput Loss with Increasing Payload

Figure 6.4: The difference in throughput between the transmit-
ter (positive throughput) and the receiver (subtracted from this
throughput). This results, as would be expected considering
the transport overheads, in a negative value with a magnitude
describing the total throughput loss. Note that the lower-end
noise is from the inaccuracy of the measurement tooling.

Another limitation with the prototype worth mentioning before delving into the various per-

formance aspects is the packet overhead inherent in the addressed format. In opposition

to stream-based systems where the data transmitted is purely meaningful to the destination,

GraphIPC also needs to transmit metadata about where the packet has come from such that

the router is able to correctly direct the message. This in of itself causes an 11-byte overhead

for all messages, such that packets of less than 11 bytes will be sending more metadata than

actual data in the stream, effectively slowing the overall transfer down with reference to a purely

data-oriented flow.

However, with this known, the actual upper bound on throughput is unlikely to be a problem,

as the retrieval and processing tools usually used for natural language processing tend to

be either quite heavyweight (written in scripting or interpreted languages, or requiring large

libraries) or tend to take considerable time to perform the various statistical operations required.

This speed limit imposed by the tooling will be much, much lower than the available processing

speed here, so in practice, the dominant performance factor will be the tooling in use, rather

than the transport.

6.7 Forwarding Policies

The GraphIPC router prototype supports three forwarding policies; broadcast, anycast and

round-robin. Each of these policies has ramifications for the overall load on the router and

its clients, and therefore, will have different effects on throughput performance.

95

6: Evaluation Forwarding Policies

Therefore to determine the characteristics of these different operating modes, each was

tested in the same configuration; specifically a single data source with two data sinks - and the

results examined to establish overall trends for each.

6.7.1 Broadcast

With the router in broadcast mode all messages are sent to every forward address (the default

mode for forwarding messages). For each iteration, the router was shut down and reset, along

with all connected nodes to ensure that the start state was identical in all cases. Each sample

increased the payload length by 1000 bytes to cause the transport layer to send more than a

single packet, as the loopback network MTU (maximum transmission unit) is particularly high

- in this particular case 65536 Bytes (≈65KiB), so small transfers will be unlikely to see more

than one packet transfer in practice. Real network links will have much reduced MTU sizes,

often either 1500 Bytes or 1470 Bytes, depending on the specifics of the network hardware in

use.

Broadcast Throughput

Figure 6.5: Source and Sink throughput with the router in
Broadcast mode. From data in Table B.3

Transfer rates were monitored at both the source and sink nodes via the modified pv binary

(See 6.4.2) then graphed against one another to produce Figure 6.5.

As would be expected, there was a little deviation between the throughput seen at the sinks

from that at the source. This small deviation, a maximum of approximately 12 bytes/sec is due

to the additional overheads involved with forwarding the packets through the Router and the

various Graph nodes.

Somewhat unexpectedly, there appears to be larger differences at very large payload lengths

along a fairly unpredictable curve. However, as these are still fairly small changes in total

96

6: Evaluation Forwarding Policies

Broadcast Throughput Sink Deviation

Figure 6.6: The throughput deviation between the Sink nodes
and the Source. From data in Table B.3

throughput when compared to the source, this is unlikely to cause any issues during actual

operation.

6.7.2 AnyCast

In anycast mode, the router randomly selects a forwarding node to transfer each message to,

omitting all others (if there are any; broadcast and anycast are identical when only one forward

address is known). Again, for each iteration, the router and nodes were shut down and reset,

and the total payload length was increased by 1000 bytes each cycle.

AnyCast Throughput with Increasing Payload

Figure 6.7: From data in Table B.5

Once again, transfer rates were monitored at both the source and sink nodes via the modified

pv binary (See 6.4.2) then graphed against one another to produce Figure 6.7. Furthermore,

97

6: Evaluation Forwarding Policies

as the throughput sum of all sink nodes should be approximately equal to the throughput of the

source node, we can calculate and determine a throughput difference to further characterise

this mode; the results of which can be seen in Figure 6.8.

Anycast Throughput Source/Sink Deviation

Figure 6.8: From data in Table B.5

The anycast selection in the Router is handled by the system rand() function, which is

driven from the linux standard entropy source. As such, this provides a fairly uniform distribution

of random values, such that the random selection presents an approximately even distribution

of load over the sinks in this test.

It is expected that larger differences in individual throughput would be seen if extremely

large numbers of sinks were used, but as the random source is designed to provide an even

distribution, chasing this deviation was deemed to be overly complicated to achieve and has

been omitted from these tests.

6.7.3 RoundRobin

In round-robin mode, the router attempts to forward each message to each forward table recipi-

ent in turn, looping back the start of the list each time around.

On its own, this presents a useful load-balancing mechanism for situations where the target

throughput is not available at a particular point in the processing chain, and a number of nodes

is instead ganged together to handle the workload. This is an extremely common pattern across

the space of distributed and sequential processing, and can be seen readily in NLP literature

via Apache HADOOP projects, as well as a wide range of other high-workload tasks, including

web services for high performance, low data-per-transaction work.

In Figure 6.9 we see the three curves demonstrate the expected behaviour here where each

sink receives approximately half of the throughput seen at the source. This is further evidenced

in Figure 6.10 where the throughput discrepancy normalises around 130 bytes/second total (or

98

6: Evaluation Forwarding Policies

approximately 65 bytes/second loss per sink).

Round-Robin Throughput

Figure 6.9: Round-robin routing options distribute the mes-
sages between all available sink nodes from the forward list.
The data presented here demonstrates that the throughput on
the sinks individually is precisely half the throughput seen at
the source, less some measurement noise. From data in Table
B.4

Round-Robin Sink Throughput Deviation

Figure 6.10: Taking the source throughput and subtracting the
sub of all sink nodes gives a reasonable measure of how much
performance is lost through the transport layer and router. In
this case, after the measurement error at the lower end (sub-
500,000 bytes) the loss normalises around 130 bytes/second
loss in processing. From data in Table B.4

As the workload required to achieve round-robin operation is significantly lighter than that

of the broadcast mode, we can see there is a correspondingly more smooth set of throughput

curves.

Internally, the Router maintains a value in each context which points to the next offset in the

forward list, such that transmission can be initiated immediately upon reception of a packet, and

99

6: Evaluation Runtime Operation

once processed, the value is simply incremented ready for the next transmission. By contrast,

broadcast modes require that the Router touches all forward addresses and their corresponding

context structures to get each destination in turn for forwarding operations - a clearly much more

heavyweight operation, causing the larger jitter presenting in Figure 6.6.

6.8 Runtime Operation

Now that the individual router modes have been characterised, the following sections will detail

practical operations and configurations for use in actual data processing. The workloads in

these examples were artificial so the end results bear no scientific worth by themselves, but

serve to provide as close to a simulated task as possible.

OpenNLP was used to test the following configurations due to its highly modular nature;

each process is encapsulated into a single command which accepts input and output streams

or files. It is this high modularity that lends OpenNLP to GraphIPC operation, as workflows can

be executed as discrete processes, and thus, be wrapped with the graph binary.

NLTK and GATE could have also been used for these tests, as both also follow a generally

modular design, but during this testing, it was OpenNLP which provided sufficient pre-trained

data to enable some of the subprocesses to function. Without having to first train a number of

models or load particular databases, other frameworks would be more difficult to get up and

running for the purposes required here.

Another option for these tests could have been to integrate with a larger package which

encompasses multiple operations internally; effectively extending the package with GraphIPC

aware interfaces.

SketchEngine somewhat straddles the line between a toolkit and a workflow system, where

the workflow itself is implicit in the configurations available in the tool. As such, integration with

such a tool would be much more involved, as the interfaces between operations are defined as

part of the wider tool itself rather than requiring all input or output operations to be funnelled

through system interfaces.

Furthermore, while the processes here have been aimed at scientific use cases in natural

language processing, the underlying framework is intended to be more general, and moving the

focus to the integration of a specific tool would change the direction of the work.

6.8.1 ‘Bus’ Operations

An extremely common pattern for NLP pipelines and linux terminal usage in general is to chain

a series of processes together through their standard input and output pipes through the use of

the ‘bar’ or ‘pipe’ operator in a terminal shell. This causes the standard output of one process

100

6: Evaluation Runtime Operation

to be fed directly into the standard input of another through the use of an anonymous pipe as

demonstrated here:

shell > processA | processB | processC

There is a clear basic parallel here to chaining a flat series of nodes together in GraphRouter,

creating much the same sequence. However, as it is possible to send data from one node back

to itself, some protection against stream confusion where messages endlessly loop the Graph

wrapping binary will spawn a clone of the first process to handle messages from the new source

address (See listing and graphic in Figure 6.11).

This kind of looped processing needs to be carefully managed by the user, however, as

using this feature can quickly cause very large numbers of processes to be spawned, each with

new addresses and route table entries.

It is not expected that this will be a particularly frequently used pattern for this design, due

to the difficult nature of the configuration, but rather is here as a kind of safety net, whereby

processes will allow multiple input connections without corrupting the output of the original

process with other data.

To enable this, the node itself must also be in --demux spawn mode, otherwise the de-

fault --demux noop and --demux merge will pass the message through directly to the inner

(optionally mangling the incoming address to match its own in the case of merge, effectively

masquerading both flows as the same).

Address Table :
|−> 00002000 { broadcast } to { 00002001 } 74.00 B 51.00 B Packets (2/3) BOUND
|−> 00001000 { broadcast } to { 00002000 } 51.00 B 0.00 B Packets (3/0) BOUND
|−> 00002001 { broadcast } to { 00003000 } 0.00 B 74.00 B Packets (0/2) BOUND

Figure 6.11: Two actual processes wrapped in the same node,
one serving the base address 0x2000, and the other providing
0x2001 as a local address. Note that the route table includes a
route to essentially the same node, but on a different address.

101

6: Evaluation Runtime Operation

6.8.2 Flow Map and Reduce

To best illustrate how the functions described in the earlier sections of this chapter can be

orchestrated and combined together to produce processing workflows the following two ex-

amples have been chosen; first, an example of a normal NLP workflow (See Figure 6.12),

expressed as a graph all at once, rather than the usual separation of discrete processes. Then

second, a real example of a workflow performed as part of a previous research effort (See

Figure 6.14); although again, this was originally performed as a series of distinct steps, rather

than the continuous flow presented here.

Figure 6.12: An example OpenNLP processing flow, using
Tokenize, Lemmatize, Sentence Detection, Language Iden-
tification and Logging in ways common to natural language
processing. As the possibilities for arranging the data flow here
are effectively infinite, this particular arrangement has been
chosen to demonstrate as many of the GraphIPC capabilties
at once, rather than for being a practical real-world analysis.

While it should be fairly obvious how a number of identical streams can be produced from

a single node by simply connecting multiple other nodes to it, there are in fact two ways to

combine multiple streams and ‘close the diamond’ in the processing flow. The first is the simpler

to understand, but requires more data to be present in the messages themselves to result in

a useful output; the second, however results in simple message contents, but relies on the

processes being aware or capable of using two input streams at once, adding complexity to the

process.

The configuration shown in 6.13 demonstrates the latter, whereby a single node provides a

data stream into the graph via its link to the standard input pipe from, and the comm binary is

leveraged to recombine two independent streams through two nodes acting as ‘shims’ to join

graph data to the standard linux/unix pipe mechanisms.

In their papers [2, 4, 32, 42], Baron, Rayson and Archer et.al explore language identification

proceses through before and after a word normalisation phase, and comparing the two outputs,

it is possible to get much more correct results from historical corpora where word spellings have

102

6: Evaluation Runtime Operation

Address Table :
|−> 00001000 { broadcast } to { 00002000 00003000 } 381.00 B 0.00 B Packets (22/0) BOUND
|−> 00002000 { broadcast } to { 00004000 } 424.00 B 381.00 B Packets (20/22) BOUND
|−> 00005000 {drop} to { none } 0.00 B 424.00 B Packets (0/20) BOUND
|−> 00003000 { broadcast } to { 00005000 } 424.00 B 381.00 B Packets (20/22) BOUND
|−> 00004000 {drop} to { none } 0.00 B 424.00 B Packets (0/20) BOUND

Figure 6.13: An example of the address table in the
GraphRouter for a diamond relationship between nodes. Note
that this particular example was running the comm binary
between the outputs of nodes 4000 and 5000 to compare
the two outputs rather than using a dedicated graph-aware
binary. Nodes 2000 and 3000 were running two different
tokenenisation models for comm to compare. The diagram
below the configuration also illustrates this mapping.

changed over time, while also still removing mis-spellings and typographical errors, culminating

in the VARD2[3] tool for spelling variation.

In Figure 6.14, the graph has been configured in such a way that this process may be

fully realised as a parallel process, with a single word token source spanning both chain con-

figurations, followed by a comparison stage (Note that in this example, the checking stage is

simulated, but could be created through judicious use of the Linux/UNIX comm binary45 to

compare the two streams).

Figure 6.14: This GraphIPC configuration demonstrates one
option for processing historical corpora in such as way as to
correctly identify the language or language-type despite the
presence of mis-spelling and transcription errors.

Configuring the router manually in the manner that has been described here give the user

maximum freedom to describe any sequence of operations; but it does require considerable

pre-planning. Each link must be described and each operating mode, both at the Router and at

the nodes must be defined before processing the data stream.

As has been previously discussed as part of Chapter 4 workflow languages have been

103

6: Evaluation Limitations and Extensions

available for a while, and are capable of simulating the kind of flows demonstrated here. This

is normally achieved through the use of intermediate input/output files and a flow unwrapping

system where parallel operations are reduced to sequential operations.

Systems such as SnakeMake46 which have gained popularity in other scientific fields through

its extremely generalised nature, makes these intermediate files very evident, including them

explicitly as part of the build sequences, and allowing users to take advantage of this effectively

side-effect-free logging.

6.9 Limitations and Extensions

As the implementation presented here is a prototype, certain notable features have been omitted

which would be desirable as part of future, full implementations.

With the increase in systems using control groups (cgroups) mechanisms to isolate pro-

cesses from one another - as used extensively in Docker, for example - being able to execute

multiple routers on the same host in some coordinated manner is desirable.

It is hoped that by implementing this as a kernel module - as would be the case for a complete

implementation - it would be simple to have a single, connected router instance underlying all

containers on the host, but there may well be cases where the graph itself also needs to be

contained, and having an extensions to the scheme along the lines of what was described in

Section 5.2.1 would provide a mechanism for this.

6.9.1 Build System Integration

With a stable base to build upon, the current prototype could be incorporated into a build

tool - such as CWL or SnakeMake - which through their existing mechanisms for describing

parallel flows could easily be made to produce actually parallel graphs rather than the apparent

parallelism they often employ.

All the tests in this chapter were orchestrated through regular Bash scripts, however (these

can be viewed in the code repository, should they be useful), so creating and configuring

networks does not require any of the workflow languages or tools to actually work.

6.9.2 Transport Layer

The prototype implementation for the router portion of this design is presented here as built

upon loopback TCP sockets. In a system implementation of this, it would be expected to be a

full kernel module, and as such would need no additional transport layer, as with direct access

to individual processes memory, the routing module would either be able to shuttle data directly

into the memory of the receiver, or as an alternative, would be able to utilise a netlink socket

104

6: Evaluation Summary

class to ensure that packet framing is preserved over the kernel/user boundary, presenting a

packet interface which any socket-capable process would the be able to tap into.

6.9.3 Multiple Host or Nested Hosting

While this prototype would quite happily execute within a process container or sandbox environ-

ment, any linkage to the rest of the host outside the container would have to be conducted

through an external link, losing the addressing information from the container router. This

problem is also equally present in cases where multiple hosts are to be connected together.

Without a robust addressing scheme to span multiple hosts, it would be quite easy for multiple

nodes to have identical addresses, causing problems when any needs to transmit data from one

router to another.

Furthermore, even if the addressing problem could be resolved, there would exist a forward

table problem between hosts, as there is currently no mechanism to identify a route to send

a message out from if the destination is not the intended recipient (as per traditional packet

forwarding networks). This would have to be addressed by an extension to the system to

incorporate these situations.

However, these problems, while considerable, are not completely unknown to the networking

literature, and have been largely addressed by prior work in areas such as general routing

protocols (BGP, MPLS, and others) in addition to addressing systems (DHCP, DNS) so future

work could integrate this into the graph to aid these network spanning problems.

Tunnelling one router to another, for example, may be a solution to the addressing issue, or

providing specific address ranges for specific routers, as seen by the original IPv4 specification,

where given high-range prefixes are intended to be used for specific purposes on the network.

6.10 Summary

The testing done in this chapter has characterised the performance and abilities of the GraphIPC

prototype, and has attempted to address any problems with the implementation at the time of

writing.

Additionally, it has been shown in the previous chapter (See Section 5.3.3), then further

evidenced here that the internal mechanics of the GraphIPC router and wrapping process are

performant; namely in the areas of address lookup and forward destination resolution.

The various policies for message forwarding have been described, illustrated and tested in

isolated configurations, as well as a more complete application focused approach exploring the

possibilities of the GraphIPC network as a whole as a tool; this included the practicalities of

specifying the graph connections, as well as the limitations therein.

105

6: Evaluation Summary

Footnotes

41See https://www.archlinux.org/ for details

42See https://ubuntu.com/ for details

43https://travis-ci.com/ - performs automated code builds in containers to validate version controlled software, usually

from GitHub repositories.

44This is currently (at the time of writing) hosted on GitHub at https://github.com/JohnVidler/GraphIPC, see this URL

for the latest sources, scripts and tools. If this project somehow outlasts GitHub, sources may also be obtained at

https://johnvidler.co.uk/.

45See https://linux.die.net/man/1/comm for details, although the suggested syntax would be “comm -23 <(Graph -a

1000 -o) <(Graph -a 2000 -o) | Graph -a 3000 -i” such that nodes 1000 and 2000 can be used to funnel data into comm,

then out via 3000

46See https://snakemake.readthedocs.io/en/stable/ for the SnakeMake documentation

106

https://www.archlinux.org/
https://ubuntu.com/
https://travis-ci.com/
https://github.com/JohnVidler/GraphIPC
https://johnvidler.co.uk/
https://linux.die.net/man/1/comm
https://snakemake.readthedocs.io/en/stable/

Chapter 7

Conclusion

In the latter portion of the opening chapter of this thesis, four research questions were stated.

In Chapter 3 What would a modern workload-focused approach look like for local message

passing? (RQ1) was explored, with a focus on how processes in modern workloads actually

interact. This included work of a more abstract nature to identify the shape of the rest of

the work (Sections 3.2.1 and 3.3.1), concluding with a discussion around Multi-Path IPC in

the general case (Section 3.3.3). A further exploration of the dominant design patterns for

high-speed computing; Map and Reduce (Section 3.4) along with a case study involving local

GPU computing (Section 3.5) exploring the use and characteristics of the hardware all provided

further insights into how modern workloads are handled.

What affordances are there to use the modern heterogeneous systems more effectively for

analysis tasks? (RQ2) was addressed with a case study subsequently published as “Dealing

With Big Data Outside Of The Cloud: GPU Accelerated Sort” [54] and discussed as part of

Section 3.5.

In this section and paper, I demonstrate that using even traditionally sub-optimal approaches

can give significant processing performance gains when used at large scales (See Figures 3.16

and 3.17). The ‘swap sort’ algorithm used to generate the sorted lists in the paper is extremely

inefficient on normal computing hardware, and would be inappropriate for use without the vast

multiplication of effort that running on a GPU can generate.

What workflow elements are required to support large scale data and text analytical tasks?

(RQ3) has been addressed as part of the design process of building GraphIPC, as detailed in

Chapter 4, with the introduction and identification of the components required to build GraphIPC;

namely, the Mux (Section 4.5.4), Demux (Section 4.5.5), and Bus (Section 4.5.1) message

handling components, along with the more familiar Map and Reduce design patterns (Sections

4.5.2 and 4.5.3, respectively) from high-performance computing.

What of systems design attempts from the last 30 years is actually applicable or appropriate

107

7: Conclusion Utility

for modern workloads? (RQ4) was explored in the Related Work (Chapter 2) and Analysis

(Chapter 3). In these chapters, I examined a number of different kernel designs with a focus

on how they interact with their various components, and how this affects the overall design of

the system. In the Tesselation design (Section 2.12.1) in particular, the focus on the general

distribution of processing load affected the rest of this work; this along with the Barrelfish

(Section 2.12.4) design set the scope for the design of GraphIPC’s routing layer.

7.1 Novelty

The model and prototype of GraphIPC presented here describes a novel way for processes to

interact. It describes a way for messages to be transferred between ‘nodes’ asynchronously, but

in-order, and along both unicast and multicast paths.

The two binaries GraphRouter and Graph encompass two halves of the model, with the

Router shuttling data around the system to instances of Graph, and the Graph presenting a

bridging component between existing software and provides a demonstrator for working with

other existing tools.

This brings many traditionally networking concepts down into the interprocess communica-

tion space, enabling more complete workflows to be realised in increasingly parallel, heterogen-

eous environments using existing tooling.

Specific extensions to existing NLP workflows have been demonstrated in Section 6.8.2,

where the addition of GraphIPC to the processing sequence would introduce new possibilities

for analysis, including real-time analysis.

The workflows presented here using the prototype have been given a natural language

processing focus, but the model is designed with general purpose processing in mind, and

as such should be applicable to any complex workflow interactions.

In contrast to existing systems, the model describes continuous, live interaction between

processes, enabling both injection and tapping of messages while the system is operating

without affecting the communication in progress.

7.2 Utility

The prototype presented here needs to, at minimum, perform the same functions as well as the

existing system interfaces to be ‘useful’ in a real sense; ideally, this would include improvements

to the overall performance or features available as well.

Examining the throughput of each subcomponent of the GraphIPC prototype (Design details

in Section 4.5, evaluated in Section 6.7 onwards) shows some drop in overall performance of

108

7: Conclusion Significant Contributions

the individual links. This, however, is to be expected, as the additional routing task between

each message is required and takes some processing time to achieve.

Furthermore, as the prototype presented here exists purely in user space, and takes no

advantage of kernel space structures or tricks; it is therefore using the kernel ‘blind’, with the

transport layer being unaware of what the prototype is actually doing with the data and purely

shuttling it in a TCP loopback socket between processes and the router.

With the router process in userspace, each packet must make a minimum of 4 kernel

boundary crossings which will significantly reduce the throughput. This particular limitation was

identified and discussed in Section 5.5 and illustrated in Figure 5.17.

However, with these known issues GraphIPC remains a practical tool for routing messages

around an NLP workflow, as the actual traffic seen on this kind of network will tend to have low

bandwidth requirements beyond the first stages of processing, as an unfortunate consequence

of the difficulties in processing natural languages is fairly long run times for analysis, even when

split among several stages.

An interesting point to note at this stage however, is that the pipe-to-socket test described

in Section 6.6 - a close approximation to what GraphIPC is actually doing, but hidden by the

Graph binary wrapper - achieves performance which plateaus around 15kB/s while performing

a one-to-one link, whereas GraphIPC still reaches 13.5kB/s while performing anycast commu-

nication. Note that internally, anycast communication is the most lightweight form of routing for

GraphRouter, as it only has to grab the next target process based on a random offset in the

target table and continue, whereas all other forms (Broadcast and Round-Robin) require pointer

updates to track the current policy state.

This then, is only a modest reduction in performance, while offering all the features the

GraphIPC Router describes to provide asynchronous graph-form messaging. Therefore, I as-

sert that this prototype - although slightly suboptimal - remains a useful tool to the NLP com-

munity.

7.3 Significant Contributions

This work has opened the opportunity for other work - both my own and other researchers - for

exploring novel ways to interact with data streams between process stages, predominantly in

natural language processing pipelines, but also in other areas of data processing.

So far, the prototype has only been applied to working with ‘bare’ OpenNLP tooling, and

with workloads which are merely representative of normal workloads for natural language pro-

cessing, rather than actual real-world tool chains47.

Without the support of the features this prototype presents, dynamic connections between

109

7: Conclusion Limitations and Further Work

processes in graph forms would not be possible on the systems available to developers and

researchers today.

Furthermore, the inclusion of a tool (GraphWrap) to encapsulate legacy applications as part

of the larger graph network allows for back-compatibility to tool chains, significantly augmenting

their capabilities without requiring any additional work on the part of the tool authors.

7.4 Limitations and Further Work

The prototype presented in this thesis is just that - a prototype - further work would be required

to take this to production quality, most notably as has been pointed out throughout; the Router

component of GraphIPC would greatly benefit from becoming a kernel module.

7.4.1 Building as a Kernel Module

As a module, and thus part of the kernel, the router would have no need for the buffering support

that the current prototype uses, as it would be able to directly shuttle data between the individual

nodes using ‘proper’ netlink sockets.

The advantages this would present are twofold; first, as the current implementation is built

entirely in userspace, each message delivery operation require at least two kernel boundary

crossings. One to send each message to the router, and another one each to forward this on to

the destination node or nodes.

The second advantage would be the access to packet framing via the netlink connection,

as netlink preserves packet boundaries through its API, rather than the TCP link chosen here

which drops the edges of frames requiring the applications themselves to track them manually

adding significant overheads at both ends of the connections.

7.4.2 Networking and Protocol

Additionally, while the network protocol itself is quite simple, handling the parsing and generation

of packets manually is generally not considered good practice anymore unless its needed for a

particular reason. Instead a framework such as Google’s Protocol Buffers48, Cap’n Proto49 or

FlatBuffers50.

All of these frameworks offer ways to describe messages external to the code, and have

the serialisation and deserialisation routines for these formats to be generated as a pre-compile

step. The main advantages for this is consistency and validation, as both sides are (nearly)

guaranteed to be free of human error.

At the time of writing, FlatBuffers offers the best feature set to describe the messages

GraphIPC uses, although this would have to be examined when any extension is undertaken.

110

7: Conclusion Limitations and Further Work

7.4.3 Integration With a Zero-Copy Framework

Rather than relying on a custom routing process embedded in the kernel, there may be gains

associated with moving this prototype to a component as part of a larger zero-copy framework,

such as DPDK[29] or Netmap[46], where most of the work doing the heavy lifting for packet

transfer has already been done, and can be shown to be extremely close to line-rate, saturating

the links.

This would allow a GraphIPC subsystem to be embedded into a general-purpose system

much more readily, whereas as it stands, the prototype must be run independantly of any other

subsystem.

7.4.4 Remote Host and Nested Router Support

Related to the networking extensions, the router implementation currently makes a number of

assumptions which may not be correct in all cases.

One such assumption is that there is only one router on each host. While in most cases this

may well be true, certainly on general purpose machines (such as laptops, and desktops), in

the case where this were to be deployed on a server, it is extremely likely that multiple routers

would be desirable.

Given the continued rise of containers (and systems therein, such as Docker) and related

process isolation techniques, it may be desirable to run a router within each container context,

rendering each set of node addresses within a single control group space. This would enable

local routers per container, at the expense of slightly more storage use for each container as

tracking the additional address spaces would be required.

In situations like the one described here, it would then follow that it would likely be desirable

to connect multiple router instances together directly, without an intermediate node proxying

messages between them. This link should allow the address spaces of each to be mapped in

some way to the other, thus allowing the ‘remote’ processes to send messages over the link.

Equally, in situations such as clusters or web-based systems, it may also be desirable to run

multiple independent routers and connect across entire hosts, to build a coherent system across

a larger collection of hardware.

7.4.5 Workflow Tool Integration

Each of the additions here described adds some level of complexity to the overall design (with

the possible exception of the kernel module integration), and as the complexity of controls at

each point in the network increases, the need for some method for defining flows becomes more

pressing.

111

7: Conclusion Limitations and Further Work

Technologies such as Snakemake, CWL and others are readily available to work with Graph-

IPC, but have no mechanism to declare the routes required at present. Therefore, a particularly

useful addition to this work would be to extend one of the existing workflow description tools (or

workflow description languages) to use GraphIPC directly, ideally with sensible default config-

urations baked in to the systems to protect users from accidental misconfiguration.

112

7: Conclusion Limitations and Further Work

Footnotes

47‘Tool chains’ are a bit of a misnomer here, as the ‘chain’ implies sequentiality, rather than for example, ‘Tool Graphs’

perhaps when referring to this style of processing in general? Such a term would be applicable to othertool kits which

allow pseudo-graph flows too.

48https://developers.google.com/protocol-buffers

49https://capnproto.org/

50https://google.github.io/flatbuffers/

113

https://developers.google.com/protocol-buffers
https://capnproto.org/
https://google.github.io/flatbuffers/

Chapter 8

Bibliography

[1] Laurence Anthony. Laurence Anthony’s Software. http://www.laurenceanthony.net/software.

html. [Online; retrieved 28th October 2017] (cit. on p. 48).

[2] Dawn Archer et al. “Guidelines for normalising early modern English corpora: decisions

and justifications”. English. In: ICAME Journal 39.1 (Mar. 2015). 2015. This work is

licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Li-

cense. (CC BY-NC-ND 3.0), pp. 5–24. ISSN: 1502-5462. DOI: 10.1515/icame-2015-0001

(cit. on p. 102).

[3] Alistair Baron and Paul Rayson. “VARD2: A tool for dealing with spelling variation in

historical corpora”. In: Postgraduate conference in corpus linguistics. 2008 (cit. on p. 103).

[4] Alistair Baron, Paul Rayson and Dawn Archer. “Word frequency and key word statistics in

corpus linguistics”. English. In: Anglistik 20.1 (2009), pp. 41–67. ISSN: 0947-0034 (cit. on

p. 102).

[5] Andrew Baumann et al. “The multikernel: a new OS architecture for scalable multicore

systems”. In: Proceedings of the ACM SIGOPS 22nd symposium on Operating systems

principles. SOSP ’09. Big Sky, Montana, USA: ACM, 2009, pp. 29–44. ISBN: 978-1-60558-

752-3. DOI: http://doi.acm.org/10.1145/1629575.1629579. URL: http://doi.acm.org/10.

1145/1629575.1629579 (cit. on pp. 23, 25).

[6] Edward Loper Bird Steven and Ewan Klein. Natural Language Processing with Python.

O’Reilly Media Inc, 2009 (cit. on p. 9).

[7] Martin Bor, John Edward Vidler and Utz Roedig. “LoRa for the Internet of Things”. In: 16

(2016), pp. 361–366. URL: https://www.researchgate.net/profile/John Vidler2/publication/

297731094 LoRa for the Internet of Things / links /56e1893e08ae4bb9771ba9e3 /LoRa-

for-the-Internet-of-Things.pdf (cit. on p. ix).

114

http://www.laurenceanthony.net/software.html
http://www.laurenceanthony.net/software.html
https://doi.org/10.1515/icame-2015-0001
https://doi.org/http://doi.acm.org/10.1145/1629575.1629579
http://doi.acm.org/10.1145/1629575.1629579
http://doi.acm.org/10.1145/1629575.1629579
https://www.researchgate.net/profile/John_Vidler2/publication/297731094_LoRa_for_the_Internet_of_Things/links/56e1893e08ae4bb9771ba9e3/LoRa-for-the-Internet-of-Things.pdf
https://www.researchgate.net/profile/John_Vidler2/publication/297731094_LoRa_for_the_Internet_of_Things/links/56e1893e08ae4bb9771ba9e3/LoRa-for-the-Internet-of-Things.pdf
https://www.researchgate.net/profile/John_Vidler2/publication/297731094_LoRa_for_the_Internet_of_Things/links/56e1893e08ae4bb9771ba9e3/LoRa-for-the-Internet-of-Things.pdf

8: Bibliography

[8] Silas Boyd-Wickizer et al. “Corey: an operating system for many cores”. In: Proceedings of

the 8th USENIX conference on Operating systems design and implementation. OSDI’08.

Berkeley, CA, USA: USENIX Association, 2008, pp. 43–57. URL: http://dl.acm.org/citation.

cfm?id=1855745http://portal.acm.org/citation.cfm?id=1855741.1855745 (cit. on p. 26).

[9] BYU corpora: billions of words of data: free online access. https : / / corpus . byu . edu/.

[Online; retrieved 28th October 2017] (cit. on p. 48).

[10] Daniel Cederman and Philippas Tsigas. “GPU-Quicksort: A practical Quicksort algorithm

for graphics processors”. In: J. Exp. Algorithmics 14 (Jan. 2010), 4:1.4–4:1.24. ISSN: 1084-

6654. DOI: 10 .1145 /1498698 .1564500. URL: http : / / doi . acm.org /10 .1145 /1498698 .

1564500 (cit. on p. 49).

[11] Rishav Chakravarti et al. CFO: A Framework for Building Production NLP Systems. 2019.

arXiv: 1908.06121 [cs.CL] (cit. on p. 10).

[12] Hamish Cunningham. “GATE, a General Architecture for Text Engineering”. In: Com-

puters and the Humanities 36.2 (2002), pp. 223–254. ISSN: 1572-8412. DOI: 10.1023/A:

1014348124664. URL: https://doi.org/10.1023/A:1014348124664 (cit. on pp. 7, 8).

[13] Yangdong Steve Deng. “IP routing processing with graphic processors”. In: 2010 Design,

Automation & Test in Europe Conference & Exhibition (DATE 2010) (Mar. 2010), pp. 93–

98. DOI: 10.1109/DATE.2010.5457229. URL: http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=5457229 (cit. on pp. 49, 54).

[14] Docker - Build, Ship, and Run Any App, Anywhere. https: / /www.docker.com/. [Online;

retrieved 28th October 2017] (cit. on p. 3).

[15] Documentation — MQTT. http://mqtt.org/documentation. [Online; retrieved 6th August

2018] (cit. on p. 11).

[16] ECMA. ECMA-404 - The JSON Data Interchange Format. http://www.ecma-international.

org/publications/files/ECMA-ST/ECMA-404.pdf. 2013 (cit. on p. 62).

[17] Dawson R Engler, M Frans Kaashoek and J. O’Toole. Exokernel. New York, New York,

USA: ACM Press, 1995, pp. 251–266. ISBN: 0897917154. DOI: 10.1145/224056.224076.

URL: http://portal.acm.org/citation.cfm?doid=224056.224076 (cit. on p. 22).

[18] Clark C. Evans. YAML - YAML Ain’t Markup Language. http : / /yaml .org/. 2011 (cit. on

p. 62).

[19] Sylvain Frey et al. “It Bends but Would it Break? Topological Analysis of BGP Infra-

structures in Europe”. In: 2016 IEEE European Symposium on Security and Privacy

(EuroS&P). IEEE. 2016, pp. 423–438. URL: https : / / eprints . soton . ac . uk / 412811 / 1 /

EuroSnP.pdf (cit. on p. ix).

115

http://dl.acm.org/citation.cfm?id=1855745 http://portal.acm.org/citation.cfm?id=1855741.1855745
http://dl.acm.org/citation.cfm?id=1855745 http://portal.acm.org/citation.cfm?id=1855741.1855745
https://corpus.byu.edu/
https://doi.org/10.1145/1498698.1564500
http://doi.acm.org/10.1145/1498698.1564500
http://doi.acm.org/10.1145/1498698.1564500
http://arxiv.org/abs/1908.06121
https://doi.org/10.1023/A:1014348124664
https://doi.org/10.1023/A:1014348124664
https://doi.org/10.1023/A:1014348124664
https://doi.org/10.1109/DATE.2010.5457229
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5457229
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5457229
https://www.docker.com/
http://mqtt.org/documentation
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://doi.org/10.1145/224056.224076
http://portal.acm.org/citation.cfm?doid=224056.224076
http://yaml.org/
https://eprints.soton.ac.uk/412811/1/EuroSnP.pdf
https://eprints.soton.ac.uk/412811/1/EuroSnP.pdf

8: Bibliography

[20] Sadayuki Furuhashi. MessagePack - It’s like JSON, but fast and small. http://msgpack.org.

2013 (cit. on p. 62).

[21] GATE.ac.uk. https://gate.ac.uk/. [Online; retrieved 28th October 2017] (cit. on p. 48).

[22] Adam Greenhalgh, Mark Handley and Felipe Huici. “Flowstream Architectures 1 Introduc-

tion 2 Flowstream Architectures”. In: Computer 17.2009 (), pp. 1–5 (cit. on p. 2).

[23] Adam Greenhalgh et al. “Flowstream Architectures.” In: ECEASST (2009), pp. –1–1 (cit.

on p. 2).

[24] BSON Group. BSON - Binary JSON. http://bsonspec.org/. 2015 (cit. on p. 62).

[25] John Hardy et al. “Shapeclip: towards rapid prototyping with shape-changing displays for

designers”. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in

Computing Systems. ACM. 2015, pp. 19–28 (cit. on p. ix).

[26] Nancy Ide, Keith Suderman and Jin-Dong Kim. “Mining Biomedical Publications With The

LAPPS Grid”. In: Proceedings of the Eleventh International Conference on Language Re-

sources and Evaluation (LREC 2018). Miyazaki, Japan: European Language Resources

Association (ELRA), Dec. 7. ISBN: 979-10-95546-00-9 (cit. on p. 10).

[27] Nancy Ide et al. “The Language Applications Grid”. In: Proceedings of the Ninth Interna-

tional Conference on Language Resources and Evaluation (LREC’14). Ed. by Nicoletta

Calzolari (Conference Chair) et al. Reykjavik, Iceland: European Language Resources

Association (ELRA), May 2014. ISBN: 978-2-9517408-8-4 (cit. on p. 10).

[28] University of Southern California Information Sciences Institute. Transmission Control

Protocol. https://tools.ietf.org/html/rfc793. 1981 (cit. on p. 18).

[29] Intel. Data Plane Development Kit. https://www.dpdk.org/. [Online; retrieved 18th February

2020] (cit. on pp. 15, 111).

[30] Paul Kocher et al. “Spectre Attacks: Exploiting Speculative Execution”. In: arXiv preprint

arXiv:1801.01203 (2018). eprint: 1801.01203. URL: https://spectreattack.com/spectre.pdf

(cit. on p. 54).

[31] Johannes Köster and Sven Rahmann. “Snakemake—a scalable bioinformatics workflow

engine”. In: Bioinformatics 28.19 (Aug. 2012), pp. 2520–2522. ISSN: 1367-4803. DOI: 10.

1093/bioinformatics/bts480. eprint: http://oup.prod.sis.lan/bioinformatics/article-pdf/28/

19/2520/819790/bts480.pdf. URL: https://doi.org/10.1093/bioinformatics/bts480 (cit. on

p. 9).

[32] Anu Lehto et al. “Improving the precision of corpus methods: The standardized version

of Early Modern English Medical Texts”. English. In: Early Modern English Medical Texts.

Ed. by Irma Taavitsainen and Päivi Pahta. John Benjamins, 2010, pp. 279–289. ISBN: 978

90 272 1177 4 (cit. on p. 102).

116

http://msgpack.org
https://gate.ac.uk/
http://bsonspec.org/
https://tools.ietf.org/html/rfc793
https://www.dpdk.org/
1801.01203
https://spectreattack.com/spectre.pdf
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1093/bioinformatics/bts480
http://oup.prod.sis.lan/bioinformatics/article-pdf/28/19/2520/819790/bts480.pdf
http://oup.prod.sis.lan/bioinformatics/article-pdf/28/19/2520/819790/bts480.pdf
https://doi.org/10.1093/bioinformatics/bts480

8: Bibliography

[33] liblfds.org. https://liblfds.org/. [Online; retrieved 23rd October 2017] (cit. on p. 45).

[34] Moritz Lipp et al. “Meltdown”. In: arXiv preprint arXiv:1801.01207 (2018). eprint: 1801.

01207. URL: https://meltdownattack.com/meltdown.pdf (cit. on p. 54).

[35] Jed Liu et al. “Fabric: a platform for secure distributed computation and storage”. In:

Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles.

SOSP ’09. Big Sky, Montana, USA: ACM, 2009, pp. 321–334. ISBN: 978-1-60558-752-3.

DOI: http://doi.acm.org/10.1145/1629575.1629606. URL: http://doi.acm.org/10.1145/

1629575.1629606 (cit. on pp. 27, 28).

[36] Rose Liu et al. “Tessellation: Space-Time Partitioning in a Manycore Client OS”. In: ()

(cit. on p. 20).

[37] Carlos Aguilar Melchor et al. “High-Speed Private Information Retrieval Computation on

GPU”. In: Proceedings of the 2008 Second International Conference on Emerging Se-

curity Information, Systems and Technologies. Washington, DC, USA: IEEE Computer

Society, 2008, pp. 263–272. ISBN: 978-0-7695-3329-2. DOI: 10.1109/SECURWARE.2008.

55. URL: http://portal.acm.org/citation.cfm?id=1447563.1447928 (cit. on pp. 49, 54).

[38] a. Mirtchovski, R. Simmonds and R. Minnich. “Plan 9 - an integrated approach to grid

computing”. In: 18th International Parallel and Distributed Processing Symposium, 2004.

Proceedings. 00.C (2004), pp. 273–280. DOI: 10.1109/IPDPS.2004.1303349. URL: http:

//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1303349 (cit. on p. 31).

[39] Edmund B. Nightingale et al. “Helios: heterogeneous multiprocessing with satellite ker-

nels”. In: Proceedings of the ACM SIGOPS 22nd symposium on Operating systems

principles. SOSP ’09. Big Sky, Montana, USA: ACM, 2009, pp. 221–234. ISBN: 978-1-

60558-752-3. DOI: http://doi.acm.org/10.1145/1629575.1629597. URL: http://doi.acm.org/

10.1145/1629575.1629597 (cit. on pp. 29, 30).

[40] Ruslan Nikolaev and Godmar Back. “VirtuOS: An Operating System with Kernel Virtual-

ization”. In: Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems

Principles. 2013. ISBN: 978-1-4503-2388-8. DOI: 10.1145/2517349.2522719 (cit. on p. 3).

[41] Nebojša Tijanić (editors) Brad Chapman John Chilton Michael Heuer Andrey Kartashov

Dan Leehr Hervé Ménager Maya Nedeljkovich Matt Scales Stian Soiland-Reyes Luka

Stojanovic Peter Amstutz Michael R. Crusoe. “Common Workflow Language, v1.0. Spe-

cification, Common Workflow Language working group.” In: (2016). DOI: https://doi.org/

10.6084/m9.figshare.3115156.v2. URL: https://w3id.org/cwl/v1.0/ (cit. on p. 10).

[42] Scott Songlin Piao et al. “A time-sensitive historical thesaurus-based semantic tagger for

deep semantic annotation”. English. In: Computer Speech and Language 46 (Nov. 2017),

pp. 113–135. ISSN: 0885-2308. DOI: 10.1016/j.csl.2017.04.010 (cit. on p. 102).

117

https://liblfds.org/
1801.01207
1801.01207
https://meltdownattack.com/meltdown.pdf
https://doi.org/http://doi.acm.org/10.1145/1629575.1629606
http://doi.acm.org/10.1145/1629575.1629606
http://doi.acm.org/10.1145/1629575.1629606
https://doi.org/10.1109/SECURWARE.2008.55
https://doi.org/10.1109/SECURWARE.2008.55
http://portal.acm.org/citation.cfm?id=1447563.1447928
https://doi.org/10.1109/IPDPS.2004.1303349
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1303349
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1303349
https://doi.org/http://doi.acm.org/10.1145/1629575.1629597
http://doi.acm.org/10.1145/1629575.1629597
http://doi.acm.org/10.1145/1629575.1629597
https://doi.org/10.1145/2517349.2522719
https://doi.org/https://doi.org/10.6084/m9.figshare.3115156.v2
https://doi.org/https://doi.org/10.6084/m9.figshare.3115156.v2
https://w3id.org/cwl/v1.0/
https://doi.org/10.1016/j.csl.2017.04.010

8: Bibliography

[43] Version Wire Protocol. “OpenFlow Switch Specification”. In: Wire 0 (2009), pp. 1–42 (cit.

on p. 2).

[44] Layali Rashid, WessamM. Hassanein and MoustafaA. Hammad. “Analyzing and enhan-

cing the parallel sort operation on multithreaded architectures”. English. In: The Journal

of Supercomputing 53.2 (2010), pp. 293–312. ISSN: 0920-8542. DOI: 10.1007/s11227-

009-0294-5. URL: http://dx.doi.org/10.1007/s11227-009-0294-5 (cit. on p. 49).

[45] Paul Rayson. CQPweb Main Page. https://cqpweb.lancs.ac.uk/. [Online; retrieved 28th

October 2017] (cit. on p. 48).

[46] Luigi Rizzo. Netmap. https://github.com/luigirizzo/netmap. [Online; retrieved 18th Febru-

ary 2020] (cit. on pp. 15, 111).

[47] Jonathan S. Shapiro, Jonathan M. Smith and David J. Farber. “EROS: A Fast Capability

System”. In: Proceedings of the Seventeenth ACM Symposium on Operating Systems

Principles. SOSP ’99. Charleston, South Carolina, USA: Association for Computing Ma-

chinery, 1999, 170–185. ISBN: 1581131402. DOI: 10.1145/319151.319163. URL: https:

//doi.org/10.1145/319151.319163 (cit. on p. 4).

[48] Sketch Engine — language corpus management and query system. https://www.sketchengine.

co.uk/. [Online; retrieved 28th October 2017] (cit. on p. 48).

[49] Weibin Sun, Robert Ricci and Matthew L. Curry. “GPUstore”. In: Proceedings of the 5th

Annual International Systems and Storage Conference on - SYSTOR ’12. New York, New

York, USA: ACM Press, 2012, pp. 1–12. ISBN: 9781450314480. DOI: 10.1145/2367589.

2367595. URL: http://dl.acm.org/citation.cfm?id=2367595 (cit. on pp. 49, 54).

[50] Weibin Sun, Robert Ricci and Matthew L Curry. “GPUstore: harnessing GPU computing

for storage systems in the OS kernel”. In: Proceedings of the 5th Annual International

Systems and Storage Conference. SYSTOR ’12. New York, NY, USA: ACM, 2012, 6:1–

6:12. ISBN: 978-1-4503-1448-0. DOI: 10.1145/2367589.2367595. URL: http://doi.acm.org/

10.1145/2367589.2367595 (cit. on p. 3).

[51] Chandramohan A Thekkath et al. “Implementing network protocols at user level”. In:

SIGCOMM Comput. Commun. Rev. 23.4 (Oct. 1993), pp. 64–73. ISSN: 0146-4833. DOI:

10.1145/167954.166244. URL: http://doi.acm.org/10.1145/167954.166244 (cit. on p. 3).

[52] Pedro Trancoso, Despo Othonos and Artemakis Artemiou. “Data parallel acceleration

of decision support queries using Cell/BE and GPUs”. In: Proceedings of the 6th ACM

conference on Computing frontiers - CF ’09 (2009), p. 117. DOI: 10 . 1145 / 1531743 .

1531763. URL: http://portal.acm.org/citation.cfm?doid=1531743.1531763 (cit. on p. 3).

118

https://doi.org/10.1007/s11227-009-0294-5
https://doi.org/10.1007/s11227-009-0294-5
http://dx.doi.org/10.1007/s11227-009-0294-5
https://cqpweb.lancs.ac.uk/
https://github.com/luigirizzo/netmap
https://doi.org/10.1145/319151.319163
https://doi.org/10.1145/319151.319163
https://doi.org/10.1145/319151.319163
https://www.sketchengine.co.uk/
https://www.sketchengine.co.uk/
https://doi.org/10.1145/2367589.2367595
https://doi.org/10.1145/2367589.2367595
http://dl.acm.org/citation.cfm?id=2367595
https://doi.org/10.1145/2367589.2367595
http://doi.acm.org/10.1145/2367589.2367595
http://doi.acm.org/10.1145/2367589.2367595
https://doi.org/10.1145/167954.166244
http://doi.acm.org/10.1145/167954.166244
https://doi.org/10.1145/1531743.1531763
https://doi.org/10.1145/1531743.1531763
http://portal.acm.org/citation.cfm?doid=1531743.1531763

8: Bibliography

[53] John Vidler and Stephen Wattam. “Keeping Properties with the Data CL-MetaHeaders-

An Open Specification”. In: CMLC-5+BigNLP (2017). URL: https:// ids- pub.bsz- bw.de/

frontdoor/index/index/docId/6243 (cit. on pp. iii, viii, 10).

[54] John Vidler et al. “Dealing With Big Data Outside Of The Cloud: GPU Accelerated Sort”.

In: Challenges in the Management of Large Corpora. CMLC-2. Reykjavik, 2014, p. 21.

URL: http://www.lrec-conf.org/proceedings/lrec2014/workshops/LREC2014Workshop-

CMLC2Proceedings-rev2.pdf (cit. on pp. iii, viii, 107).

[55] W3C. Extensible Markup Language (XML) 1.0 (Fifth Edition). http://www.w3.org/TR/REC-

xml/. 2008 (cit. on p. 62).

[56] I Watson and J Gurd. “A Practical Data Flow Computer”. In: Computer 15.2 (Feb. 1982),

pp. 51–57. ISSN: 0018-9162. DOI: 10.1109/MC.1982.1653941 (cit. on p. 2).

[57] Stephen Wattam et al. “Experiences with Parallelisation of an Existing NLP Pipeline :

Tagging Hansard”. In: Proceedings of The 9th edition of the Language Resources and

Evaluation Conference. 2014 (cit. on p. 49).

[58] Welcome to Apache Hadoop! https://hadoop.apache.org/. [Online; retrieved 22nd October

2017] (cit. on pp. 11, 45).

[59] Wmatrix corpus analysis and comparison tool. http://ucrel.lancs.ac.uk/wmatrix/. [Online;

retrieved 28th October 2017] (cit. on p. 48).

[60] WordSmith Tools home page. http://www.lexically.net/wordsmith/. [Online; retrieved 28th

October 2017] (cit. on p. 48).

119

https://ids-pub.bsz-bw.de/frontdoor/index/index/docId/6243
https://ids-pub.bsz-bw.de/frontdoor/index/index/docId/6243
http://www.lrec-conf.org/proceedings/lrec2014/workshops/LREC2014Workshop-CMLC2 Proceedings-rev2.pdf
http://www.lrec-conf.org/proceedings/lrec2014/workshops/LREC2014Workshop-CMLC2 Proceedings-rev2.pdf
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
https://doi.org/10.1109/MC.1982.1653941
https://hadoop.apache.org/
http://ucrel.lancs.ac.uk/wmatrix/
http://www.lexically.net/wordsmith/

Appendix A

List of Figures

2.1 The internal architecture of GATE. Of note is the translation layers between tools.

These translations can be done automatically provided that GATE knows the nature

of the tool in question. 8

2.2 An example of the use and initial output of OpenNLP running the POSTagger module

with a pre-trained model. 9

2.3 Chaining multiple parts of the opennlp system together to build a more complete

analysis; in this case POS tagging followed by chunking. Note that for line-length

reasons the command has been broken out to two lines. 9

2.4 An example of part of a Snakemake configuration, note the rules defined by the input

and output commands used to build up the order-of-execution relationships. Taken

from https://snakemake.readthedocs.io/en/stable/, October 2019 10

2.5 The PCI bus verses the PCIe network . 13

2.6 The data structure of a PCIe ‘network’ packet . 14

2.7 An approximation of the layers between normal application code and the hardware

they are executing on in traditional and exokernel model operating systems 24

2.8 The Barrelfish architecture, as presented in“The Multikernel: A New OS Architecture

for Scalable Multicore Systems”[5] . 25

2.9 Routes through hardware communication paths, demonstrating the variety of laten-

cies paths exhibit . 27

2.10 The Fabric system overview, as presented in “Fabric: a platform for secure distributed

computation and storage” [35] . 28

120

https://snakemake.readthedocs.io/en/stable/

A: List of Figures

2.11 “This figure shows a general overview of the architecture of the Helios operating sys-

tem executing on a machine with one general purpose CPU and a single program-

mable device ... Applications on different kernels communicate via remote message-

passing channels, which transparently marshal and send messages between satel-

lite kernels. ...” - From “Helios: Heterogeneous Multiprocessing with Satellite Ker-

nels”[39] . 30

3.1 A 3x3 grid of processing elements, each connected to its neighbours with a contention-

free, dedicated network bus. 35

3.2 A single serpentine chain through the 9 processing elements, through which, as-

suming that the processing done at each unit takes equal time would result in 100%

utilisation of all available processing power after 8 message writes. 36

3.3 By using the left-most-vertical communication chain, this data flow could achieve

100% utilisation in only 4 message writes. 36

3.4 In Figure 3.3 the left-most-vertical was used to provide a faster path, but only had

a maximum out-degree of 2 for any given node; in the arrangement here, using the

centre-vertical path (with node 2 as the initial data source) as the main transport, the

processors could achieve 100% utilisation in only 3 message writes. 37

3.5 With node 5 as the initial data source, following this connection scheme, it would be

possible to achieve 100% utilisation in only 2 message writes. In practical terms,

if this were a real processor, getting data to node 5 for the initial processing would

be problematic, as processor designs frequently only have memory interconnections

around the edge, and crossing busses would cause cross-talk issues. 37

3.6 A 4-stage pipeline of processes linked by FIFO queues. The initial (square) node is

assumed to be a producer, and will emit data into the chain. 38

3.7 Buffering strategies for connected processes . 39

3.8 Placing the buffer in the routing process results in a much reduced memory surface,

but presents more copy requirements for the router to get the messages into the

connected processes. 40

3.9 . 41

3.10 Branching and Merging communication paths in a process network. Note that the

semantics of handling the plural in-dimension of Node 4 can become complex on

their own, without the complexity of the rest of the system. 42

3.11 A graphical representation of the ‘Map’ operation. 45

3.12 A graphical representation of the ‘Reduce’ operation. 46

121

A: List of Figures

3.13 Sending data through a map/reduce (or otherwise highly parallel operation) that

requires that the input set be immutable often requires additional translation stages

to ensure that the data can fit in working memory. 47

3.14 The layers of caching in a GPU; Note that sync operations are likely not to occur

very often during normal operation, unless the software mandates it, and to ensure

coherency, the processing on the synchronising elements must briefly halt. This

structure is replicated for each group of processors in the GPU. 50

3.15 A sample of the input set used for testing the sorting algorithms, truncated to fit this

format. The actual prefix and postfix strings were at least 10 words long each 50

3.16 The measured CPU and GPU performance measurements shown on the same axis.

Beyond 40,000 concordance lines, the sorting technique took so long to complete

on the CPU as to be useless, while the GPU continued to perform exceptionally well.

Note that the y-scale is logarithmic. 53

3.17 The first portion of Figure 3.16, showing the initial CPU advantage for very small

numbers of concordance lines. 53

4.1 A simple view on a given process from a connectome, note that links are directional. 58

4.2 An example of a CSV file - note that the field definitions are unknown for any given

‘column’, and would require further data to correctly parse. 62

4.3 A simple message encoded in both JSON and MessagePack formats. Note that the

MessagePack data is hex-encoded binary, with whitespace added for clarity. 62

4.4 The most basic operation of a node in the graph, bus takes each substream in,

processes it independently, then forwards it out on its own substream 63

4.5 The map operation takes a single stream input, and applies each discrete message

to its own processing function, before emitting each along their own substream;

new streams are created on demand until there are enough to handle the function

processing delay and packet input rate . 64

4.6 Performing the complimentary operation to map, reduce takes any valid substream

and applies it to a single processing function in the order the packets are received,

emitting all resultant data on a single stream (with the nodes address as its’ source) 65

4.7 The mux or ‘multiplex ’ operation performs a variant of the reduce operation, taking

any number of (valid) substreams and inserting them into a single output stream in

the order they are received. 65

122

A: List of Figures

4.8 The DeMux or ‘Demultiplex ’ operation is a variant of the map operation, whereby a

single stream’s packets are distributed over a number of output streams, as defined

by the node configuration and forwarding policy. 66

4.9 A suggested address component allocation, although not required for the design to

work, having an agreed upon format and scheme for addressing does greatly simplify

understanding what the graph is doing. 67

5.1 Two separate routers acting as a single graph. Each independently controls their

zone, which can be modelled as a single large-address-space node for the purposes

of forwarding and addressing. 72

5.2 The internal (high-level) architecture of the Graph binary. The inner processes are

wrapped binaries which can run unaware of the GraphIPC network 73

5.3 Graph in Bus Mode. Each unique input stream maps to a unique, corresponding

output stream, such that individual data sources do not intermingle or interleave. . . 74

5.4 Bus mode vs. equivalent Linux Pipes . 75

5.5 Graph in Map Mode. 75

5.6 Graph in Reduce Mode . 76

5.7 Graph in Mux and DemuxMode . 77

5.8 Cyclic graphs can cause deadlocks if messages are synchronous 77

5.9 Synchronous messages can cause ripples of process-halts to propagate over the

network, as each waits for the next in sequence. 78

5.10 The gnw header t structure, which describes the header of all GraphIPC packets . . 79

5.11 The fast address lookup path through the address data structures - the first level can

reference the context for the handler immediately, short-cutting the entire structure,

provided that the address field in the context entirely matches the needle address . 80

5.12 Computed offset in the local table, where ‘maskBytes’ is actually the offset in the

mask lookup table, for speed. 80

5.13 The slow address lookup path through the address data structures - this would only

normally occur if there were many addresses with very similar values, as by the

second level, the data is sufficiently different to specify the handler without ambiguity 81

5.14 The hash address lookup sequence implemented in the GraphRouter binary. 82

5.15 The content of a context structure for tracking the connection and data for a single

graph node . 83

5.16 Subprocess Wrapping . 83

123

A: List of Figures

5.17 Graphical representation of the kernel boundary crossings involved in both the user-

space and kernel-module implementations for the router component. Boundary

crossings are generally handled through system calls in normal Linux configura-

tions, although mapped memory and synchronisation primitives can also be used to

achieve the same affect with some implied, unpredictable latency (unless executing

as a RTOS kernel) . 88

6.1 An example of the modified output from pv in the pv4science package; this particular

example shows, in order, Number of messages, Timestamp, Throughput rate in bytes

per second, and average throughput in bytes per second. 93

6.2 A plot of the effective throughput for unix pipes. The low-end noise is likely measure-

ment error from the extremely small run duration for those tests. The upper ‘step’ is

likely to be an increase in internal buffer size or transfer approach causing the local

increase in throughput. See also Table B.2. 93

6.3 Throughput via a loopback TCP socket between two nc (netcat) instances on the

same machine as all the following tests. 94

6.4 The difference in throughput between the transmitter (positive throughput) and the

receiver (subtracted from this throughput). This results, as would be expected con-

sidering the transport overheads, in a negative value with a magnitude describing

the total throughput loss. Note that the lower-end noise is from the inaccuracy of the

measurement tooling. 95

6.5 Source and Sink throughput with the router in Broadcast mode. From data in Table B.3 96

6.6 The throughput deviation between the Sink nodes and the Source. From data in

Table B.3 . 97

6.7 From data in Table B.5 . 97

6.8 From data in Table B.5 . 98

6.9 Round-robin routing options distribute the messages between all available sink nodes

from the forward list. The data presented here demonstrates that the throughput on

the sinks individually is precisely half the throughput seen at the source, less some

measurement noise. From data in Table B.4 . 99

6.10 Taking the source throughput and subtracting the sub of all sink nodes gives a

reasonable measure of how much performance is lost through the transport layer

and router. In this case, after the measurement error at the lower end (sub-500,000

bytes) the loss normalises around 130 bytes/second loss in processing. From data

in Table B.4 . 99

124

A: List of Figures

6.11 Two actual processes wrapped in the same node, one serving the base address

0x2000, and the other providing 0x2001 as a local address. Note that the route table

includes a route to essentially the same node, but on a different address. 101

6.12 An example OpenNLP processing flow, using Tokenize, Lemmatize, Sentence De-

tection, Language Identification and Logging in ways common to natural language

processing. As the possibilities for arranging the data flow here are effectively in-

finite, this particular arrangement has been chosen to demonstrate as many of the

GraphIPC capabilties at once, rather than for being a practical real-world analysis. . 102

6.13 An example of the address table in the GraphRouter for a diamond relationship

between nodes. Note that this particular example was running the comm binary

between the outputs of nodes 4000 and 5000 to compare the two outputs rather

than using a dedicated graph-aware binary. Nodes 2000 and 3000 were running

two different tokenenisation models for comm to compare. The diagram below the

configuration also illustrates this mapping. 103

6.14 This GraphIPC configuration demonstrates one option for processing historical cor-

pora in such as way as to correctly identify the language or language-type despite

the presence of mis-spelling and transcription errors. 103

125

Appendix B

Data Tables

B.1 Hardware Specification of Test Environment

1 $ lscpu
2 Architecture : x86_64
3 CPU op−mode(s): 32−bit , 64−bit
4 Byte Order : Little Endian
5 Address sizes : 39 bits physical , 48 bits virtual
6 CPU(s): 8
7 On−line CPU(s) list: 0−7
8 Thread (s) per core: 2
9 Core(s) per socket : 4

10 Socket (s): 1
11 NUMA node(s): 1
12 Vendor ID: GenuineIntel
13 CPU family : 6
14 Model : 142
15 Model name: Intel (R) Core(TM) i5−8250U CPU @ 1.60 GHz
16 Stepping : 10
17 CPU MHz: 1721.310
18 CPU max MHz: 3400.0000
19 CPU min MHz: 400.0000
20 BogoMIPS : 3601.00
21 Virtualization : VT−x
22 L1d cache : 128 KiB
23 L1i cache : 128 KiB
24 L2 cache : 1 MiB
25 L3 cache : 6 MiB
26 NUMA node0 CPU(s): 0−7
27 Vulnerability L1tf: Mitigation ; PTE Inversion ; VMX conditional cache flushes , SMT vulnerable
28 Vulnerability Mds: Vulnerable : Clear CPU buffers attempted , no microcode ; SMT vulnerable
29 Vulnerability Meltdown : Mitigation ; PTI
30 Vulnerability Spec store bypass : Mitigation ; Speculative Store Bypass disabled via prctl and seccomp
31 Vulnerability Spectre v1: Mitigation ; usercopy / swapgs barriers and __user pointer sanitization
32 Vulnerability Spectre v2: Mitigation ; Full generic retpoline , IBPB conditional , IBRS_FW , STIBP

conditional , RSB filling
33 Flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36

clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art
arch_perfmon pebs bts rep_good nopl xto

34 pology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64
monitor ds_cpl vmx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt
tsc_deadline_timer aes xsave avx f16c

35 rdrand lahf_lm abm 3 dnowprefetch cpuid_fault epb invpcid_single pti ssbd
ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2
erms invpcid mpx rdseed adx sm

36 ap clflushopt intel_pt xsaveopt xsavec xgetbv1 xsaves dtherm ida arat pln
pts hwp hwp_notify hwp_act_window hwp_epp flush_l1d

37
38 $ callisto
39 description : Notebook
40 product : 20 L7S00R00 (LENOVO_MT_20L7_BU_Think_FM_ThinkPad T480s)
41 vendor : LENOVO
42 version : ThinkPad T480s
43 serial : PC0XDVFK
44 width : 4294967295 bits
45 capabilities : smbios−3.0 dmi−3.0 smp vsyscall32
46 configuration : administrator_password = disabled chassis = notebook family = ThinkPad T480s power−on_password =

disabled sku= LENOVO_MT_20L7_BU_Think_FM_ThinkPad T480s uuid =4 C090A7F−2836−B211−A85C−A2222BCE7B4F
47 ∗−core
48 description : Motherboard
49 product : 20 L7S00R00
50 vendor : LENOVO
51 physical id: 0
52 version : SDK0J40709 WIN
53 serial : L1HF88R01EM
54 slot: Not Available
55 ∗−memory
56 description : System Memory
57 physical id: 3
58 slot: System board or motherboard
59 size: 8GiB
60 ∗−bank :0
61 description : SODIMM DDR4 Synchronous Unbuffered (Unregistered) 2400 MHz (0.4 ns)
62 product : M471A1K43BB1−CRC
63 vendor : Samsung

126

B: Data Tables Hardware Specification of Test Environment

64 physical id: 0
65 serial : 00000000
66 slot: ChannelA−DIMM0
67 size: 8GiB
68 width : 64 bits
69 clock : 2400 MHz (0.4 ns)
70 ∗−bank :1
71 description : [empty]
72 physical id: 1
73 slot: ChannelB−DIMM0
74 ∗−cache :0
75 description : L1 cache
76 physical id: 7
77 slot: L1 Cache
78 size: 256 KiB
79 capacity : 256 KiB
80 capabilities : synchronous internal write−back unified
81 configuration : level =1
82 ∗−cache :1
83 description : L2 cache
84 physical id: 8
85 slot: L2 Cache
86 size: 1MiB
87 capacity : 1MiB
88 capabilities : synchronous internal write−back unified
89 configuration : level =2
90 ∗−cache :2
91 description : L3 cache
92 physical id: 9
93 slot: L3 Cache
94 size: 6MiB
95 capacity : 6MiB
96 capabilities : synchronous internal write−back unified
97 configuration : level =3
98 ∗−cpu
99 description : CPU

100 product : Intel (R) Core(TM) i5−8250U CPU @ 1.60 GHz
101 vendor : Intel Corp.
102 physical id: a
103 bus info: cpu@0
104 version : Intel (R) Core(TM) i5−8250U CPU @ 1.60 GHz
105 serial : None
106 slot: U3E1
107 size: 3123 MHz
108 capacity : 3400 MHz
109 width : 64 bits
110 clock : 100 MHz
111 capabilities : x86−64 fpu fpu_exception wp vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov

pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp constant_tsc art
arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq
dtes64 monitor ds_cpl vmx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt
tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3 dnowprefetch cpuid_fault epb invpcid_single
pti ssbd ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep

bmi2 erms invpcid mpx rdseed adx smap clflushopt intel_pt xsaveopt xsavec xgetbv1 xsaves dtherm ida
arat pln pts hwp hwp_notify hwp_act_window hwp_epp flush_l1d cpufreq

112 configuration : cores =4 enabledcores =4 threads =8
113 ∗−firmware
114 description : BIOS
115 vendor : LENOVO
116 physical id: b
117 version : N22ET48W (1.25)
118 date: 07/18/2018
119 size: 128 KiB
120 capacity : 15 MiB
121 capabilities : pci pnp upgrade shadowing cdboot bootselect edd int13floppy720 int5printscreen

int9keyboard int14serial int17printer int10video acpi usb biosbootspecification uefi
122 ∗−pci
123 description : Host bridge
124 product : Xeon E3−1200 v6 /7 th Gen Core Processor Host Bridge /DRAM Registers
125 vendor : Intel Corporation
126 physical id: 100
127 bus info: pci@0000 :00:00.0
128 version : 08
129 width : 32 bits
130 clock : 33 MHz
131 configuration : driver = skl_uncore
132 resources : irq :0
133 ∗−display
134 description : VGA compatible controller
135 product : UHD Graphics 620
136 vendor : Intel Corporation
137 physical id: 2
138 bus info: pci@0000 :00:02.0
139 version : 07
140 width : 64 bits
141 clock : 33 MHz
142 capabilities : pciexpress msi pm vga_controller bus_master cap_list rom
143 configuration : driver =i915 latency =0
144 resources : irq :160 memory :db000000−dbffffff memory :80000000−9 fffffff ioport :e000(size =64) memory

:c0000−dffff
145 ∗−generic :0
146 description : Signal processing controller
147 product : Xeon E3−1200 v5/E3−1500 v5 /6 th Gen Core Processor Thermal Subsystem
148 vendor : Intel Corporation
149 physical id: 4
150 bus info: pci@0000 :00:04.0
151 version : 08
152 width : 64 bits
153 clock : 33 MHz

127

B: Data Tables Hardware Specification of Test Environment

154 capabilities : msi pm cap_list
155 configuration : driver = proc_thermal latency =0
156 resources : irq :16 memory :dc240000−dc247fff
157 ∗−generic :1 UNCLAIMED
158 description : System peripheral
159 product : Xeon E3−1200 v5/v6 / E3−1500 v5 / 6th /7 th Gen Core Processor Gaussian Mixture Model
160 vendor : Intel Corporation
161 physical id: 8
162 bus info: pci@0000 :00:08.0
163 version : 00
164 width : 64 bits
165 clock : 33 MHz
166 capabilities : msi pm cap_list
167 configuration : latency =0
168 resources : memory :dc250000−dc250fff
169 ∗−usb
170 description : USB controller
171 product : Sunrise Point−LP USB 3.0 xHCI Controller
172 vendor : Intel Corporation
173 physical id: 14
174 bus info: pci@0000 :00:14.0
175 version : 21
176 width : 64 bits
177 clock : 33 MHz
178 capabilities : pm msi xhci bus_master cap_list
179 configuration : driver = xhci_hcd latency =0
180 resources : irq :138 memory :dc220000−dc22ffff
181 ∗−usbhost :0
182 product : xHCI Host Controller
183 vendor : Linux 5.2.11−arch1−1−ARCH xhci−hcd
184 physical id: 0
185 bus info: usb@1
186 logical name: usb1
187 version : 5.02
188 capabilities : usb−2.00
189 configuration : driver =hub slots =12 speed =480 Mbit/s
190 ∗−usb
191 description : Video
192 product : Integrated Camera
193 vendor : Chicony Electronics Co.,Ltd.
194 physical id: 8
195 bus info: usb@1 :8
196 version : 0.27
197 serial : 0001
198 capabilities : usb−2.01
199 configuration : driver = uvcvideo maxpower =500 mA speed =480 Mbit/s
200 ∗−usbhost :1
201 product : xHCI Host Controller
202 vendor : Linux 5.2.11−arch1−1−ARCH xhci−hcd
203 physical id: 1
204 bus info: usb@2
205 logical name: usb2
206 version : 5.02
207 capabilities : usb−3.00
208 configuration : driver =hub slots =6 speed =5000 Mbit/s
209 ∗−usb
210 description : Mass storage device
211 product : USB3.0−CRW
212 vendor : Generic
213 physical id: 3
214 bus info: usb@2 :3
215 version : 2.04
216 serial : 20120501030900000
217 capabilities : usb−3.00 scsi
218 configuration : driver =usb−storage maxpower =800 mA speed =5000 Mbit/s
219 ∗−generic :2
220 description : Signal processing controller
221 product : Sunrise Point−LP Thermal subsystem
222 vendor : Intel Corporation
223 physical id: 14.2
224 bus info: pci@0000 :00:14.2
225 version : 21
226 width : 64 bits
227 clock : 33 MHz
228 capabilities : pm msi cap_list
229 configuration : driver = intel_pch_thermal latency =0
230 resources : irq :18 memory :dc251000−dc251fff
231 ∗−generic :3
232 description : Signal processing controller
233 product : Sunrise Point−LP Serial IO I2C Controller #0
234 vendor : Intel Corporation
235 physical id: 15
236 bus info: pci@0000 :00:15.0
237 version : 21
238 width : 64 bits
239 clock : 33 MHz
240 capabilities : pm bus_master cap_list
241 configuration : driver =intel−lpss latency =0
242 resources : irq :16 memory :dc252000−dc252fff
243 ∗−communication
244 description : Communication controller
245 product : Sunrise Point−LP CSME HECI #1
246 vendor : Intel Corporation
247 physical id: 16
248 bus info: pci@0000 :00:16.0
249 version : 21
250 width : 64 bits
251 clock : 33 MHz
252 capabilities : pm msi bus_master cap_list

128

B: Data Tables Hardware Specification of Test Environment

253 configuration : driver = mei_me latency =0
254 resources : irq :129 memory :dc253000−dc253fff
255 ∗−pci :0
256 description : PCI bridge
257 product : Sunrise Point−LP PCI Express Root Port #1
258 vendor : Intel Corporation
259 physical id: 1c
260 bus info: pci@0000 :00:1 c.0
261 version : f1
262 width : 32 bits
263 clock : 33 MHz
264 capabilities : pci pciexpress msi pm normal_decode bus_master cap_list
265 configuration : driver = pcieport
266 resources : irq :122 ioport :2000(size =4096) memory :7 f800000−7f9fffff ioport :7 fa00000 (size =2097152)
267 ∗−pci :1
268 description : PCI bridge
269 product : Sunrise Point−LP PCI Express Root Port #5
270 vendor : Intel Corporation
271 physical id: 1c.4
272 bus info: pci@0000 :00:1 c.4
273 version : f1
274 width : 32 bits
275 clock : 33 MHz
276 capabilities : pci pciexpress msi pm normal_decode bus_master cap_list
277 configuration : driver = pcieport
278 resources : irq :123 ioport :3000(size =8192) memory :c4000000−da0fffff ioport : a0000000 (size

=570425344)
279 ∗−pci
280 description : PCI bridge
281 product : JHL6240 Thunderbolt 3 Bridge (Low Power) [Alpine Ridge LP 2016]
282 vendor : Intel Corporation
283 physical id: 0
284 bus info: pci@0000 :04:00.0
285 logical name: /dev/fb0
286 version : 01
287 width : 64 bits
288 clock : 33 MHz
289 capabilities : pci pm msi pciexpress normal_decode bus_master cap_list fb
290 configuration : depth =32 driver = pcieport mode =1920 x1080 visual = truecolor xres =1920 yres =1080
291 resources : iomemory :31310−3130f irq :16 ioport :3000(size =4096) memory :c4000000−da0fffff ioport

: a0000000 (size =570425344)
292 ∗−pci :0
293 description : PCI bridge
294 product : JHL6240 Thunderbolt 3 Bridge (Low Power) [Alpine Ridge LP 2016]
295 vendor : Intel Corporation
296 physical id: 0
297 bus info: pci@0000 :05:00.0
298 version : 01
299 width : 32 bits
300 clock : 33 MHz
301 capabilities : pci pm msi pciexpress normal_decode bus_master cap_list
302 configuration : driver = pcieport
303 resources : irq :126 memory :da000000−da0fffff
304 ∗−generic
305 description : System peripheral
306 product : JHL6240 Thunderbolt 3 NHI (Low Power) [Alpine Ridge LP 2016]
307 vendor : Intel Corporation
308 physical id: 0
309 bus info: pci@0000 :06:00.0
310 version : 01
311 width : 32 bits
312 clock : 33 MHz
313 capabilities : pm msi pciexpress msix bus_master cap_list
314 configuration : driver = thunderbolt latency =0
315 resources : irq :16 memory :da000000−da03ffff memory :da040000−da040fff
316 ∗−pci :1
317 description : PCI bridge
318 product : JHL6240 Thunderbolt 3 Bridge (Low Power) [Alpine Ridge LP 2016]
319 vendor : Intel Corporation
320 physical id: 1
321 bus info: pci@0000 :05:01.0
322 version : 01
323 width : 32 bits
324 clock : 33 MHz
325 capabilities : pci pm msi pciexpress normal_decode bus_master cap_list
326 configuration : driver = pcieport
327 resources : irq :127 ioport :3000(size =4096) memory :c4000000−d9efffff ioport : a0000000 (size

=570425344)
328 ∗−pci :2
329 description : PCI bridge
330 product : JHL6240 Thunderbolt 3 Bridge (Low Power) [Alpine Ridge LP 2016]
331 vendor : Intel Corporation
332 physical id: 2
333 bus info: pci@0000 :05:02.0
334 version : 01
335 width : 32 bits
336 clock : 33 MHz
337 capabilities : pci pm msi pciexpress normal_decode bus_master cap_list
338 configuration : driver = pcieport
339 resources : irq :128 memory :d9f00000−d9ffffff
340 ∗−usb
341 description : USB controller
342 product : JHL6240 Thunderbolt 3 USB 3.1 Controller (Low Power) [Alpine Ridge LP 2016]
343 vendor : Intel Corporation
344 physical id: 0
345 bus info: pci@0000 :3c :00.0
346 version : 01
347 width : 32 bits
348 clock : 33 MHz

129

B: Data Tables Hardware Specification of Test Environment

349 capabilities : pm msi pciexpress xhci bus_master cap_list
350 configuration : driver = xhci_hcd latency =0
351 resources : irq :139 memory :d9f00000−d9f0ffff
352 ∗−usbhost :0
353 product : xHCI Host Controller
354 vendor : Linux 5.2.11−arch1−1−ARCH xhci−hcd
355 physical id: 0
356 bus info: usb@3
357 logical name: usb3
358 version : 5.02
359 capabilities : usb−2.00
360 configuration : driver =hub slots =2 speed =480 Mbit/s
361 ∗−usbhost :1
362 product : xHCI Host Controller
363 vendor : Linux 5.2.11−arch1−1−ARCH xhci−hcd
364 physical id: 1
365 bus info: usb@4
366 logical name: usb4
367 version : 5.02
368 capabilities : usb−3.00
369 configuration : driver =hub slots =2 speed =5000 Mbit/s
370 ∗−pci :2
371 description : PCI bridge
372 product : Sunrise Point−LP PCI Express Root Port #7
373 vendor : Intel Corporation
374 physical id: 1c.6
375 bus info: pci@0000 :00:1 c.6
376 version : f1
377 width : 32 bits
378 clock : 33 MHz
379 capabilities : pci pciexpress msi pm normal_decode bus_master cap_list
380 configuration : driver = pcieport
381 resources : irq :124 memory :dc100000−dc1fffff
382 ∗−network
383 description : Wireless interface
384 product : Wireless 8265 / 8275
385 vendor : Intel Corporation
386 physical id: 0
387 bus info: pci@0000 :3d :00.0
388 logical name: wlp61s0
389 version : 78
390 serial : 04: d3:b0:c1 :10:5 b
391 width : 64 bits
392 clock : 33 MHz
393 capabilities : pm msi pciexpress bus_master cap_list ethernet physical wireless
394 configuration : broadcast =yes driver = iwlwifi driverversion=5.2.11−arch1−1−ARCH firmware =36.77

d01142 .0 ip =10.32.122.22 latency =0 link=yes multicast =yes wireless =IEEE 802.11
395 resources : irq :158 memory :dc100000−dc101fff
396 ∗−pci :3
397 description : PCI bridge
398 product : Sunrise Point−LP PCI Express Root Port #9
399 vendor : Intel Corporation
400 physical id: 1d
401 bus info: pci@0000 :00:1 d.0
402 version : f1
403 width : 32 bits
404 clock : 33 MHz
405 capabilities : pci pciexpress msi pm normal_decode bus_master cap_list
406 configuration : driver = pcieport
407 resources : irq :125 memory :dc000000−dc0fffff
408 ∗−storage
409 description : Non−Volatile memory controller
410 product : NVMe SSD Controller SM981 / PM981 / PM983
411 vendor : Samsung Electronics Co Ltd
412 physical id: 0
413 bus info: pci@0000 :3e :00.0
414 version : 00
415 width : 64 bits
416 clock : 33 MHz
417 capabilities : storage pm msi pciexpress msix nvm_express bus_master cap_list
418 configuration : driver =nvme latency =0
419 resources : irq :16 memory :dc000000−dc003fff
420 ∗−isa
421 description : ISA bridge
422 product : Sunrise Point LPC Controller /eSPI Controller
423 vendor : Intel Corporation
424 physical id: 1f
425 bus info: pci@0000 :00:1 f.0
426 version : 21
427 width : 32 bits
428 clock : 33 MHz
429 capabilities : isa bus_master
430 configuration : latency =0
431 ∗−memory UNCLAIMED
432 description : Memory controller
433 product : Sunrise Point−LP PMC
434 vendor : Intel Corporation
435 physical id: 1f.2
436 bus info: pci@0000 :00:1 f.2
437 version : 21
438 width : 32 bits
439 clock : 33 MHz (30.3 ns)
440 configuration : latency =0
441 resources : memory :dc24c000−dc24ffff
442 ∗−multimedia
443 description : Audio device
444 product : Sunrise Point−LP HD Audio
445 vendor : Intel Corporation
446 physical id: 1f.3

130

B: Data Tables Hardware Specification of Test Environment

447 bus info: pci@0000 :00:1 f.3
448 version : 21
449 width : 64 bits
450 clock : 33 MHz
451 capabilities : pm msi bus_master cap_list
452 configuration : driver = snd_hda_intel latency =64
453 resources : irq :131 memory :dc248000−dc24bfff memory :dc230000−dc23ffff
454 ∗−serial
455 description : SMBus
456 product : Sunrise Point−LP SMBus
457 vendor : Intel Corporation
458 physical id: 1f.4
459 bus info: pci@0000 :00:1 f.4
460 version : 21
461 width : 64 bits
462 clock : 33 MHz
463 configuration : driver = i801_smbus latency =0
464 resources : irq :16 memory :dc254000−dc2540ff ioport :efa0(size =32)
465 ∗−network
466 description : Ethernet interface
467 product : Ethernet Connection (4) I219−V
468 vendor : Intel Corporation
469 physical id: 1f.6
470 bus info: pci@0000 :00:1 f.6
471 logical name: enp0s31f6
472 version : 21
473 serial : 8c :16:45: fc :35: b6
474 capacity : 1Gbit/s
475 width : 32 bits
476 clock : 33 MHz
477 capabilities : pm msi bus_master cap_list ethernet physical tp 10 bt 10bt−fd 100 bt 100bt−fd 1000bt

−fd autonegotiation
478 configuration : autonegotiation =on broadcast =yes driver = e1000e driverversion=3.2.6−k firmware

=0.1−4 latency =0 link=no multicast =yes port= twisted pair
479 resources : irq :161 memory :dc200000−dc21ffff
480 ∗−battery
481 product : 01 AV478
482 vendor : LGC
483 physical id: 1
484 slot: Front
485 capacity : 57000 mWh
486 configuration : voltage =11.6 V
487 ∗−scsi
488 physical id: 2
489 bus info: scsi@0
490 logical name: scsi0
491 capabilities : scsi−host
492 configuration : driver =usb−storage

131

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

B.2 Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

1000 5000 0:00:00 15103.18496

2000 5000 0:00:00 14687.35037

3000 5000 0:00:00 15088.5092

4000 5000 0:00:00 14302.38678

5000 5000 0:00:00 14360.80076

6000 5000 0:00:00 13615.44536

7000 5000 0:00:00 14485.78365

8000 5000 0:00:00 14253.94834

9000 5000 0:00:00 13848.22895

10000 5000 0:00:00 12335.53646

11000 5000 0:00:00 12686.94209

12000 5000 0:00:00 12688.1011

13000 5000 0:00:00 12026.57392

14000 5000 0:00:00 12637.87926

15000 5000 0:00:00 13162.57091

16000 5000 0:00:00 11964.58483

17000 5000 0:00:00 11378.16939

18000 5000 0:00:00 11736.34535

19000 5000 0:00:00 12688.74508

20000 5000 0:00:00 12074.11575

21000 5000 0:00:00 12420.50874

22000 5000 0:00:00 12338.33694

23000 5000 0:00:00 11323.33558

24000 5000 0:00:00 10860.73497

25000 5000 0:00:00 11476.18119

26000 5000 0:00:00 11769.44135

27000 5000 0:00:00 11016.85579

28000 5000 0:00:00 11384.5166

29000 5000 0:00:00 12037.4316

30000 5000 0:00:00 11248.01191

31000 5000 0:00:00 11894.11384

32000 5000 0:00:00 11118.74598

33000 5000 0:00:00 11340.6715

132

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

34000 5000 0:00:00 10089.94174

35000 5000 0:00:00 11598.58683

36000 5000 0:00:00 10978.87664

37000 5000 0:00:00 10736.17985

38000 5000 0:00:00 11196.05182

39000 5000 0:00:00 10980.17858

40000 5000 0:00:00 10977.71962

41000 5000 0:00:00 11818.98981

42000 5000 0:00:00 11020.15807

43000 5000 0:00:00 10806.30137

44000 5000 0:00:00 10097.76658

45000 5000 0:00:00 11074.24618

46000 5000 0:00:00 10671.08307

47000 5000 0:00:00 9636.882276

48000 5000 0:00:00 11899.91694

49000 5000 0:00:00 11519.35713

50000 5000 0:00:00 10836.84266

51000 5000 0:00:00 10379.34428

52000 5000 0:00:00 10914.07567

53000 5000 0:00:00 10621.57454

54000 5000 0:00:00 10226.83111

55000 5000 0:00:00 10747.94983

56000 5000 0:00:00 10854.60474

57000 5000 0:00:00 10406.84521

58000 5000 0:00:00 9600.725047

59000 5000 0:00:00 10435.69006

60000 5000 0:00:00 10826.72903

61000 5000 0:00:00 10266.58207

62000 5000 0:00:00 9886.815733

63000 5000 0:00:00 5656.223769

64000 5000 0:00:00 6626.360723

65000 5000 0:00:00 8956.512549

66000 5000 0:00:00 6141.299008

67000 5000 0:00:00 9248.999721

133

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

68000 5000 0:00:00 7368.39313

69000 5000 0:00:00 7714.644555

70000 5000 0:00:00 7505.828276

71000 5000 0:00:00 8057.394432

72000 5000 0:00:00 8969.22122

73000 5000 0:00:00 9146.352618

74000 5000 0:00:00 8409.184175

75000 5000 0:00:00 6383.502986

76000 5000 0:00:00 8521.705636

77000 5000 0:00:00 9751.70216

78000 5000 0:00:00 6443.95499

79000 5000 0:00:00 7861.326206

80000 5000 0:00:00 9107.916054

81000 5000 0:00:00 8686.557726

82000 5000 0:00:00 9427.860837

83000 5000 0:00:00 8975.935517

84000 5000 0:00:00 8651.791353

85000 5000 0:00:00 7616.007019

86000 5000 0:00:00 7007.836162

87000 5000 0:00:00 5775.679538

88000 5000 0:00:00 8422.485341

89000 5000 0:00:00 8423.946922

90000 5000 0:00:00 5944.794263

91000 5000 0:00:00 9090.545469

92000 5000 0:00:00 8956.239812

93000 5000 0:00:00 5824.118607

94000 5000 0:00:00 6632.302497

95000 5000 0:00:00 9130.568962

96000 5000 0:00:00 9348.67763

97000 5000 0:00:00 6763.794759

98000 5000 0:00:00 5743.145843

99000 5000 0:00:00 8722.974046

100000 5000 0:00:00 8758.162608

101000 5000 0:00:00 5144.218156

134

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

102000 5000 0:00:00 5150.837114

103000 5000 0:00:00 9025.270758

104000 5000 0:00:00 8959.064244

105000 5000 0:00:00 5149.574542

106000 5000 0:00:00 8385.631723

107000 5000 0:00:00 8267.537514

108000 5000 0:00:00 9006.591023

109000 5000 0:00:00 8617.911122

110000 5000 0:00:00 8710.224759

111000 5000 0:00:00 8854.54114

112000 5000 0:00:00 8325.632124

113000 5000 0:00:00 5484.946017

114000 5000 0:00:00 6126.565031

115000 5000 0:00:00 8511.768371

116000 5000 0:00:01 4858.203611

117000 5000 0:00:00 8107.393781

118000 5000 0:00:00 7211.85398

119000 5000 0:00:00 8392.993529

120000 5000 0:00:00 8761.799954

121000 5000 0:00:00 8608.118833

122000 5000 0:00:00 6339.176363

123000 5000 0:00:00 5104.473254

124000 5000 0:00:00 8260.203003

125000 5000 0:00:00 8821.671671

126000 5000 0:00:00 9125.486388

127000 5000 0:00:00 8433.722746

128000 5000 0:00:00 8440.713274

129000 5000 0:00:00 8330.820203

130000 5000 0:00:00 8562.332927

131000 5000 0:00:00 9063.553638

132000 5000 0:00:00 7892.385742

133000 5000 0:00:00 7910.966815

134000 5000 0:00:00 6212.214207

135000 5000 0:00:01 4617.299729

135

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

136000 5000 0:00:00 5871.128724

137000 5000 0:00:00 6992.86029

138000 5000 0:00:00 6624.315211

139000 5000 0:00:01 4500.344726

140000 5000 0:00:00 8155.050341

141000 5000 0:00:00 6940.935416

142000 5000 0:00:00 7213.175297

143000 5000 0:00:00 7351.135824

144000 5000 0:00:01 3905.041878

145000 5000 0:00:01 4560.787082

146000 5000 0:00:01 2963.614519

147000 5000 0:00:01 3477.235236

148000 5000 0:00:01 4667.662435

149000 5000 0:00:00 6714.031924

150000 5000 0:00:00 7854.965909

151000 5000 0:00:00 7137.707797

152000 5000 0:00:01 4270.894283

153000 5000 0:00:01 4718.231909

154000 5000 0:00:00 7182.90698

155000 5000 0:00:00 7540.124774

156000 5000 0:00:00 7278.158102

157000 5000 0:00:00 7702.154601

158000 5000 0:00:00 7374.957594

159000 5000 0:00:00 7316.016809

160000 5000 0:00:00 7765.868387

161000 5000 0:00:00 7389.825098

162000 5000 0:00:00 7863.823737

163000 5000 0:00:00 8455.02939

164000 5000 0:00:00 8286.967749

165000 5000 0:00:00 7363.065391

166000 5000 0:00:00 7892.722121

167000 5000 0:00:00 8738.615768

168000 5000 0:00:00 7744.457679

169000 5000 0:00:00 8017.805943

136

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

170000 5000 0:00:00 7587.817607

171000 5000 0:00:01 4367.212714

172000 5000 0:00:00 8245.695335

173000 5000 0:00:00 5856.968152

174000 5000 0:00:00 6996.843024

175000 5000 0:00:00 7320.451291

176000 5000 0:00:01 4468.011717

177000 5000 0:00:00 5025.458975

178000 5000 0:00:00 5195.091262

179000 5000 0:00:00 5307.821819

180000 5000 0:00:01 4947.913317

181000 5000 0:00:00 5218.863478

182000 5000 0:00:01 4150.88638

183000 5000 0:00:01 4874.501095

184000 5000 0:00:00 5174.895959

185000 5000 0:00:01 4957.686149

186000 5000 0:00:00 5087.354972

187000 5000 0:00:01 4991.105849

188000 5000 0:00:00 5041.781241

189000 5000 0:00:00 5231.92605

190000 5000 0:00:01 4614.772626

191000 5000 0:00:01 4167.361227

192000 5000 0:00:01 4418.374074

193000 5000 0:00:01 4045.055446

194000 5000 0:00:01 4088.370956

195000 5000 0:00:01 4331.764657

196000 5000 0:00:01 4525.271833

197000 5000 0:00:01 3260.729921

198000 5000 0:00:01 4246.609083

199000 5000 0:00:01 4370.828045

200000 5000 0:00:01 4507.806168

201000 5000 0:00:01 3779.4409

202000 5000 0:00:00 5288.447809

203000 5000 0:00:01 4597.168512

137

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

204000 5000 0:00:01 3657.502672

205000 5000 0:00:01 3166.948208

206000 5000 0:00:00 6533.57342

207000 5000 0:00:00 5261.418857

208000 5000 0:00:00 6339.706852

209000 5000 0:00:00 6178.461143

210000 5000 0:00:00 5110.755175

211000 5000 0:00:01 3392.245327

212000 5000 0:00:01 3426.692426

213000 5000 0:00:01 4974.807574

214000 5000 0:00:01 3466.127615

215000 5000 0:00:01 4791.479599

216000 5000 0:00:00 6297.284737

217000 5000 0:00:00 6981.845805

218000 5000 0:00:00 5807.868733

219000 5000 0:00:00 6301.030471

220000 5000 0:00:00 6081.238043

221000 5000 0:00:00 6548.428246

222000 5000 0:00:00 6769.820681

223000 5000 0:00:00 6296.047719

224000 5000 0:00:01 4794.56718

225000 5000 0:00:01 4330.85291

226000 5000 0:00:01 4948.677268

227000 5000 0:00:01 4548.630316

228000 5000 0:00:00 5577.163968

229000 5000 0:00:00 6902.282999

230000 5000 0:00:01 3279.854217

231000 5000 0:00:00 6483.839678

232000 5000 0:00:00 6510.509916

233000 5000 0:00:00 6420.422079

234000 5000 0:00:00 6861.214106

235000 5000 0:00:01 3630.602201

236000 5000 0:00:00 6213.387613

237000 5000 0:00:00 6505.435942

138

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

238000 5000 0:00:00 6805.128345

239000 5000 0:00:00 6532.096764

240000 5000 0:00:00 6747.101108

241000 5000 0:00:00 5981.698396

242000 5000 0:00:00 6202.904448

243000 5000 0:00:00 7668.535233

244000 5000 0:00:00 7781.519824

245000 5000 0:00:01 4464.353477

246000 5000 0:00:01 4013.092312

247000 5000 0:00:01 4712.268863

248000 5000 0:00:01 4721.600283

249000 5000 0:00:01 4472.844022

250000 5000 0:00:01 4655.346106

251000 5000 0:00:01 4724.442185

252000 5000 0:00:01 4746.291722

253000 5000 0:00:01 4635.741941

254000 5000 0:00:01 4606.745196

255000 5000 0:00:01 4700.653015

256000 5000 0:00:01 4634.470076

257000 5000 0:00:01 4630.74015

258000 5000 0:00:01 4594.059697

259000 5000 0:00:01 4619.24915

260000 5000 0:00:01 4666.224931

261000 5000 0:00:01 4636.365238

262000 5000 0:00:01 4634.848125

263000 5000 0:00:01 4296.50342

264000 5000 0:00:01 4380.040331

265000 5000 0:00:01 4383.680784

266000 5000 0:00:01 4424.117101

267000 5000 0:00:01 4197.440904

268000 5000 0:00:01 4221.265214

269000 5000 0:00:01 4178.617513

270000 5000 0:00:01 4318.255425

271000 5000 0:00:01 4200.448776

139

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

272000 5000 0:00:01 4259.023593

273000 5000 0:00:01 4265.691132

274000 5000 0:00:01 4378.352724

275000 5000 0:00:01 4167.340387

276000 5000 0:00:01 4138.740515

277000 5000 0:00:01 4164.577437

278000 5000 0:00:01 4192.225267

279000 5000 0:00:01 4071.783922

280000 5000 0:00:01 4215.42153

281000 5000 0:00:01 3704.194853

282000 5000 0:00:01 4001.73195

283000 5000 0:00:01 4045.922843

284000 5000 0:00:01 3955.280022

285000 5000 0:00:01 4018.578693

286000 5000 0:00:01 4048.871499

287000 5000 0:00:01 3994.535475

288000 5000 0:00:01 3989.286373

289000 5000 0:00:01 3907.678745

290000 5000 0:00:01 4000.579284

291000 5000 0:00:01 3922.697749

292000 5000 0:00:01 3924.341829

293000 5000 0:00:01 3870.097844

294000 5000 0:00:01 3820.124108

295000 5000 0:00:01 3936.074993

296000 5000 0:00:01 3944.110378

297000 5000 0:00:01 3941.936847

298000 5000 0:00:01 3888.17908

299000 5000 0:00:01 3894.490464

300000 5000 0:00:01 4013.427322

301000 5000 0:00:01 3882.16541

302000 5000 0:00:01 3905.694659

303000 5000 0:00:01 3888.236529

304000 5000 0:00:01 3865.242196

305000 5000 0:00:01 3937.572156

140

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

306000 5000 0:00:01 3878.693098

307000 5000 0:00:01 3858.316447

308000 5000 0:00:01 3884.973699

309000 5000 0:00:01 3809.886656

310000 5000 0:00:01 3944.166381

311000 5000 0:00:01 3884.620554

312000 5000 0:00:01 3858.096138

313000 5000 0:00:01 3839.753273

314000 5000 0:00:01 3859.236658

315000 5000 0:00:01 3805.64133

316000 5000 0:00:01 3787.181602

317000 5000 0:00:01 3792.803686

318000 5000 0:00:01 3704.859071

319000 5000 0:00:01 3783.367409

320000 5000 0:00:01 3751.131904

321000 5000 0:00:01 3759.183686

322000 5000 0:00:01 3789.563996

323000 5000 0:00:01 3760.190115

324000 5000 0:00:01 3695.652656

325000 5000 0:00:01 3731.738736

326000 5000 0:00:01 3766.759254

327000 5000 0:00:01 3757.355964

328000 5000 0:00:01 3571.160734

329000 5000 0:00:01 3610.199536

330000 5000 0:00:01 3569.985277

331000 5000 0:00:01 3514.787767

332000 5000 0:00:01 3455.312785

333000 5000 0:00:01 3492.903119

334000 5000 0:00:01 3509.032953

335000 5000 0:00:01 3451.496465

336000 5000 0:00:01 3473.459642

337000 5000 0:00:01 3506.638417

338000 5000 0:00:01 3503.078505

339000 5000 0:00:01 3526.391514

141

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

340000 5000 0:00:01 3518.2725

341000 5000 0:00:01 3492.373704

342000 5000 0:00:01 3460.334531

343000 5000 0:00:01 3303.714432

344000 5000 0:00:01 3463.947237

345000 5000 0:00:01 3491.63718

346000 5000 0:00:01 3440.966774

347000 5000 0:00:01 3465.426137

348000 5000 0:00:01 3514.466599

349000 5000 0:00:01 3457.513384

350000 5000 0:00:01 3445.816262

351000 5000 0:00:01 3474.881472

352000 5000 0:00:01 3405.354307

353000 5000 0:00:01 3398.604669

354000 5000 0:00:01 3373.634774

355000 5000 0:00:01 3418.263508

356000 5000 0:00:01 3423.285875

357000 5000 0:00:01 3380.303781

358000 5000 0:00:01 3379.442446

359000 5000 0:00:01 3375.484129

360000 5000 0:00:01 3394.55066

361000 5000 0:00:01 3377.118804

362000 5000 0:00:01 3410.420198

363000 5000 0:00:01 3407.29898

364000 5000 0:00:01 3361.575046

365000 5000 0:00:01 3354.40346

366000 5000 0:00:01 3302.771686

367000 5000 0:00:01 3277.579521

368000 5000 0:00:01 3346.838944

369000 5000 0:00:01 3243.966385

370000 5000 0:00:01 3253.630238

371000 5000 0:00:01 3291.387886

372000 5000 0:00:01 3230.416569

373000 5000 0:00:01 3222.891294

142

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

374000 5000 0:00:01 3259.613905

375000 5000 0:00:01 3201.745848

376000 5000 0:00:01 3212.042332

377000 5000 0:00:01 3181.507551

378000 5000 0:00:01 3211.838064

379000 5000 0:00:01 3218.399979

380000 5000 0:00:01 3240.549908

381000 5000 0:00:01 3225.600429

382000 5000 0:00:01 3155.151416

383000 5000 0:00:01 3035.909343

384000 5000 0:00:01 3135.271935

385000 5000 0:00:01 3148.196304

386000 5000 0:00:01 3115.792832

387000 5000 0:00:01 3134.821789

388000 5000 0:00:01 3129.00121

389000 5000 0:00:01 3154.476612

390000 5000 0:00:01 3105.235178

391000 5000 0:00:01 3184.857404

392000 5000 0:00:01 3089.192399

393000 5000 0:00:01 3123.851984

394000 5000 0:00:01 3004.990087

395000 5000 0:00:01 3024.547225

396000 5000 0:00:01 3073.775531

397000 5000 0:00:01 3053.63092

398000 5000 0:00:01 2958.933553

399000 5000 0:00:01 2939.248669

400000 5000 0:00:01 2962.188844

401000 5000 0:00:01 2990.160578

402000 5000 0:00:01 3005.759637

403000 5000 0:00:01 3029.151953

404000 5000 0:00:01 3012.284095

405000 5000 0:00:01 2940.512261

406000 5000 0:00:02 2002.244115

407000 5000 0:00:02 1849.704824

143

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

408000 5000 0:00:02 2138.475712

409000 5000 0:00:01 3009.191274

410000 5000 0:00:01 2968.740352

411000 5000 0:00:01 2959.726995

412000 5000 0:00:01 2966.674162

413000 5000 0:00:01 2971.249006

414000 5000 0:00:01 2976.668869

415000 5000 0:00:01 2999.646642

416000 5000 0:00:01 2993.108667

417000 5000 0:00:01 2913.35394

418000 5000 0:00:01 2965.929772

419000 5000 0:00:01 2973.804352

420000 5000 0:00:01 2946.737137

421000 5000 0:00:01 2923.255197

422000 5000 0:00:01 2906.632004

423000 5000 0:00:01 2943.198621

424000 5000 0:00:01 2607.915545

425000 5000 0:00:01 2805.617295

426000 5000 0:00:01 2923.197089

427000 5000 0:00:01 2948.16188

428000 5000 0:00:01 2882.43582

429000 5000 0:00:01 2974.949143

430000 5000 0:00:01 2502.032902

431000 5000 0:00:01 2914.503619

432000 5000 0:00:01 2855.110019

433000 5000 0:00:01 2864.587511

434000 5000 0:00:01 2776.523715

435000 5000 0:00:01 2827.696039

436000 5000 0:00:01 2767.308129

437000 5000 0:00:01 2737.032487

438000 5000 0:00:01 2794.515372

439000 5000 0:00:01 2772.531532

440000 5000 0:00:01 2806.40624

441000 5000 0:00:01 2799.730778

144

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

442000 5000 0:00:01 2759.945463

443000 5000 0:00:01 2777.217706

444000 5000 0:00:01 2652.82247

445000 5000 0:00:01 2768.452706

446000 5000 0:00:01 2778.018539

447000 5000 0:00:01 2707.014904

448000 5000 0:00:01 2774.028216

449000 5000 0:00:01 2778.558862

450000 5000 0:00:01 2748.926269

451000 5000 0:00:01 2755.047109

452000 5000 0:00:01 2731.547848

453000 5000 0:00:01 2758.421322

454000 5000 0:00:01 2767.735511

455000 5000 0:00:01 2769.743981

456000 5000 0:00:01 2743.52487

457000 5000 0:00:01 2776.405

458000 5000 0:00:01 2735.530548

459000 5000 0:00:01 2591.781461

460000 5000 0:00:01 2615.592173

461000 5000 0:00:01 2595.320948

462000 5000 0:00:01 2641.226374

463000 5000 0:00:01 2608.300551

464000 5000 0:00:01 2575.262033

465000 5000 0:00:01 2593.689243

466000 5000 0:00:01 2631.609419

467000 5000 0:00:01 2629.682808

468000 5000 0:00:01 2602.736517

469000 5000 0:00:01 2589.339998

470000 5000 0:00:01 2598.689117

471000 5000 0:00:01 2591.414747

472000 5000 0:00:01 2592.653664

473000 5000 0:00:01 2616.618774

474000 5000 0:00:01 2585.602846

475000 5000 0:00:01 2602.300329

145

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

476000 5000 0:00:02 2489.535239

477000 5000 0:00:01 2536.286653

478000 5000 0:00:01 2577.510908

479000 5000 0:00:01 2573.217031

480000 5000 0:00:01 2555.583951

481000 5000 0:00:01 2570.440347

482000 5000 0:00:01 2568.154981

483000 5000 0:00:01 2555.586563

484000 5000 0:00:01 2559.927912

485000 5000 0:00:01 2545.533226

486000 5000 0:00:01 2557.275295

487000 5000 0:00:01 2557.29099

488000 5000 0:00:01 2546.042635

489000 5000 0:00:01 2549.739034

490000 5000 0:00:01 2535.256545

491000 5000 0:00:01 2509.594179

492000 5000 0:00:02 2499.690038

493000 5000 0:00:02 2492.442913

494000 5000 0:00:01 2518.583367

495000 5000 0:00:02 2480.748154

496000 5000 0:00:02 2426.957086

497000 5000 0:00:02 2453.485593

498000 5000 0:00:02 2463.877098

499000 5000 0:00:02 2443.589731

500000 5000 0:00:02 2299.491261

501000 5000 0:00:02 2394.029482

502000 5000 0:00:02 2464.289974

503000 5000 0:00:02 2380.766454

504000 5000 0:00:02 2382.276246

505000 5000 0:00:02 2397.58247

506000 5000 0:00:02 2373.045619

507000 5000 0:00:02 2384.88062

508000 5000 0:00:02 2416.801605

509000 5000 0:00:02 2423.641949

146

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

510000 5000 0:00:02 2412.219338

511000 5000 0:00:02 2368.86216

512000 5000 0:00:02 2328.997981

513000 5000 0:00:02 2386.191776

514000 5000 0:00:02 2416.142927

515000 5000 0:00:02 2402.112706

516000 5000 0:00:02 2407.570944

517000 5000 0:00:02 2410.523768

518000 5000 0:00:02 2421.142188

519000 5000 0:00:02 2411.313109

520000 5000 0:00:02 2426.006793

521000 5000 0:00:02 2441.31923

522000 5000 0:00:02 2479.799553

523000 5000 0:00:02 2403.702856

524000 5000 0:00:02 2365.055827

525000 5000 0:00:02 2362.279127

526000 5000 0:00:02 2391.337619

527000 5000 0:00:02 2347.569936

528000 5000 0:00:02 2352.369966

529000 5000 0:00:02 2298.623354

530000 5000 0:00:02 2339.138608

531000 5000 0:00:02 2342.639077

532000 5000 0:00:02 2298.241937

533000 5000 0:00:02 2302.697933

534000 5000 0:00:02 2278.566618

535000 5000 0:00:02 2234.377234

536000 5000 0:00:02 2309.512559

537000 5000 0:00:02 2272.720041

538000 5000 0:00:02 2314.002771

539000 5000 0:00:02 2289.217967

540000 5000 0:00:02 2280.485068

541000 5000 0:00:02 2310.149596

542000 5000 0:00:02 2256.558009

543000 5000 0:00:02 2268.876371

147

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

544000 5000 0:00:02 2268.701359

545000 5000 0:00:02 2221.290268

546000 5000 0:00:02 2208.123598

547000 5000 0:00:02 2239.117107

548000 5000 0:00:02 2223.566244

549000 5000 0:00:02 2218.826924

550000 5000 0:00:02 2203.66443

551000 5000 0:00:02 2226.093646

552000 5000 0:00:02 2190.762867

553000 5000 0:00:02 2183.903929

554000 5000 0:00:02 2194.247035

555000 5000 0:00:02 2203.153682

556000 5000 0:00:02 2206.427146

557000 5000 0:00:02 2198.472853

558000 5000 0:00:02 2180.078875

559000 5000 0:00:02 2200.476623

560000 5000 0:00:02 2189.764079

561000 5000 0:00:02 2162.348241

562000 5000 0:00:02 2175.074344

563000 5000 0:00:02 2152.541118

564000 5000 0:00:02 2178.495461

565000 5000 0:00:02 2187.639052

566000 5000 0:00:02 2177.172176

567000 5000 0:00:02 2151.303776

568000 5000 0:00:02 2239.965737

569000 5000 0:00:02 2167.748156

570000 5000 0:00:02 2228.495685

571000 5000 0:00:02 2192.315146

572000 5000 0:00:02 2209.170443

573000 5000 0:00:02 2210.012151

574000 5000 0:00:02 2195.344377

575000 5000 0:00:02 2212.544063

576000 5000 0:00:02 2201.331101

577000 5000 0:00:02 2216.012463

148

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

578000 5000 0:00:02 2218.813139

579000 5000 0:00:02 2202.523828

580000 5000 0:00:02 2202.648023

581000 5000 0:00:02 2208.616165

582000 5000 0:00:02 2187.685953

583000 5000 0:00:02 2185.975828

584000 5000 0:00:02 2198.469953

585000 5000 0:00:02 2213.563745

586000 5000 0:00:02 2184.394337

587000 5000 0:00:02 2182.132091

588000 5000 0:00:02 2219.240549

589000 5000 0:00:02 2204.230801

590000 5000 0:00:02 2095.284311

591000 5000 0:00:02 2090.140223

592000 5000 0:00:02 2078.122441

593000 5000 0:00:02 2083.649353

594000 5000 0:00:02 2032.777315

595000 5000 0:00:02 2039.160029

596000 5000 0:00:02 2019.744212

597000 5000 0:00:02 1996.168156

598000 5000 0:00:02 2024.890767

599000 5000 0:00:02 2008.907496

600000 5000 0:00:02 2017.100168

601000 5000 0:00:02 2005.684109

602000 5000 0:00:02 2023.58611

603000 5000 0:00:02 2017.045649

604000 5000 0:00:02 2015.636502

605000 5000 0:00:02 1999.996

606000 5000 0:00:02 1997.765699

607000 5000 0:00:02 1969.882079

608000 5000 0:00:02 2008.761414

609000 5000 0:00:02 1987.380926

610000 5000 0:00:02 1979.619422

611000 5000 0:00:02 1977.266966

149

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

612000 5000 0:00:02 1970.795957

613000 5000 0:00:02 1961.889127

614000 5000 0:00:02 2001.14946

615000 5000 0:00:02 1995.713208

616000 5000 0:00:02 2012.44091

617000 5000 0:00:02 2025.129426

618000 5000 0:00:02 2005.607679

619000 5000 0:00:02 2027.73372

620000 5000 0:00:02 2027.272491

621000 5000 0:00:02 2026.108433

622000 5000 0:00:02 2027.292219

623000 5000 0:00:02 2027.068664

624000 5000 0:00:02 2014.024052

625000 5000 0:00:02 2026.284147

626000 5000 0:00:02 2000.438496

627000 5000 0:00:02 1999.628869

628000 5000 0:00:02 2000.233627

629000 5000 0:00:02 2023.26594

630000 5000 0:00:02 1999.948801

631000 5000 0:00:02 2013.59661

632000 5000 0:00:02 1999.396982

633000 5000 0:00:02 2006.459193

634000 5000 0:00:02 1992.146163

635000 5000 0:00:02 1991.182249

636000 5000 0:00:02 1992.77023

637000 5000 0:00:02 1964.892866

638000 5000 0:00:02 1951.782387

639000 5000 0:00:02 1939.65952

640000 5000 0:00:02 1960.204708

641000 5000 0:00:02 1944.947105

642000 5000 0:00:02 1899.836804

643000 5000 0:00:02 1937.915392

644000 5000 0:00:02 1936.847912

645000 5000 0:00:02 1944.252072

150

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

646000 5000 0:00:02 1898.891617

647000 5000 0:00:02 1921.18308

648000 5000 0:00:02 1900.220198

649000 5000 0:00:02 1928.031965

650000 5000 0:00:02 1935.018218

651000 5000 0:00:02 1896.195436

652000 5000 0:00:02 1930.645797

653000 5000 0:00:02 1939.232971

654000 5000 0:00:02 1916.920659

655000 5000 0:00:02 1904.529734

656000 5000 0:00:02 1853.404593

657000 5000 0:00:02 1878.934253

658000 5000 0:00:02 1891.623588

659000 5000 0:00:02 1872.204798

660000 5000 0:00:02 1847.226943

661000 5000 0:00:02 1863.136941

662000 5000 0:00:02 1859.940527

663000 5000 0:00:02 1876.269061

664000 5000 0:00:02 1870.121554

665000 5000 0:00:02 1862.825273

666000 5000 0:00:02 1872.035865

667000 5000 0:00:02 1864.504935

668000 5000 0:00:02 1857.764359

669000 5000 0:00:02 1873.33133

670000 5000 0:00:02 1853.547505

671000 5000 0:00:02 1874.842279

672000 5000 0:00:02 1865.187946

673000 5000 0:00:02 1851.79767

674000 5000 0:00:02 1841.966631

675000 5000 0:00:02 1829.917914

676000 5000 0:00:02 1836.699084

677000 5000 0:00:02 1829.186872

678000 5000 0:00:02 1838.331942

679000 5000 0:00:02 1847.92467

151

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

680000 5000 0:00:02 1833.784322

681000 5000 0:00:02 1797.952564

682000 5000 0:00:02 1809.293254

683000 5000 0:00:02 1784.558784

684000 5000 0:00:02 1768.451671

685000 5000 0:00:02 1775.563768

686000 5000 0:00:02 1789.019499

687000 5000 0:00:02 1798.262303

688000 5000 0:00:02 1783.489383

689000 5000 0:00:02 1768.212143

690000 5000 0:00:02 1784.271575

691000 5000 0:00:02 1783.766158

692000 5000 0:00:02 1777.5433

693000 5000 0:00:02 1774.233726

694000 5000 0:00:02 1766.629014

695000 5000 0:00:02 1784.558784

696000 5000 0:00:02 1765.493085

697000 5000 0:00:02 1765.552309

698000 5000 0:00:02 1793.818501

699000 5000 0:00:02 1794.226609

700000 5000 0:00:02 1806.121524

701000 5000 0:00:02 1790.744359

702000 5000 0:00:02 1808.292104

703000 5000 0:00:02 1796.65011

704000 5000 0:00:02 1829.999623

705000 5000 0:00:02 1797.480077

706000 5000 0:00:02 1808.69832

707000 5000 0:00:02 1803.258705

708000 5000 0:00:02 1819.524296

709000 5000 0:00:02 1809.301765

710000 5000 0:00:02 1818.329268

711000 5000 0:00:02 1798.310811

712000 5000 0:00:02 1791.725525

713000 5000 0:00:02 1807.213021

152

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

714000 5000 0:00:02 1806.323795

715000 5000 0:00:02 1807.950135

716000 5000 0:00:02 1788.140409

717000 5000 0:00:02 1791.765333

718000 5000 0:00:02 1789.378037

719000 5000 0:00:02 1774.485594

720000 5000 0:00:02 1770.03619

721000 5000 0:00:02 1709.30295

722000 5000 0:00:02 1669.882861

723000 5000 0:00:02 1683.21208

724000 5000 0:00:02 1672.358259

725000 5000 0:00:03 1665.60734

726000 5000 0:00:03 1664.292276

727000 5000 0:00:02 1681.829481

728000 5000 0:00:02 1678.920548

729000 5000 0:00:03 1659.027949

730000 5000 0:00:03 1650.295188

731000 5000 0:00:03 1666.380605

732000 5000 0:00:03 1665.524117

733000 5000 0:00:03 1648.325203

734000 5000 0:00:03 1657.012909

735000 5000 0:00:03 1661.595477

736000 5000 0:00:02 1669.906843

737000 5000 0:00:02 1685.245373

738000 5000 0:00:02 1672.107146

739000 5000 0:00:02 1680.372344

740000 5000 0:00:02 1706.350696

741000 5000 0:00:02 1709.491713

742000 5000 0:00:02 1705.460783

743000 5000 0:00:02 1702.349617

744000 5000 0:00:02 1702.923613

745000 5000 0:00:02 1708.67326

746000 5000 0:00:02 1703.019317

747000 5000 0:00:02 1710.839985

153

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

748000 5000 0:00:02 1695.503795

749000 5000 0:00:02 1696.61129

750000 5000 0:00:02 1696.754076

751000 5000 0:00:02 1690.651374

752000 5000 0:00:02 1688.626694

753000 5000 0:00:02 1696.949292

754000 5000 0:00:02 1692.330864

755000 5000 0:00:02 1695.228441

756000 5000 0:00:02 1692.067419

757000 5000 0:00:02 1672.329173

758000 5000 0:00:03 1663.442914

759000 5000 0:00:02 1667.070653

760000 5000 0:00:03 1646.39461

761000 5000 0:00:03 1621.151751

762000 5000 0:00:03 1616.019537

763000 5000 0:00:03 1632.310876

764000 5000 0:00:03 1642.000535

765000 5000 0:00:03 1646.914128

766000 5000 0:00:03 1632.484082

767000 5000 0:00:03 1646.818117

768000 5000 0:00:03 1649.519907

769000 5000 0:00:03 1630.695162

770000 5000 0:00:03 1648.634996

771000 5000 0:00:03 1646.105709

772000 5000 0:00:03 1640.695012

773000 5000 0:00:03 1652.587175

774000 5000 0:00:03 1633.031658

775000 5000 0:00:03 1658.759361

776000 5000 0:00:03 1651.528209

777000 5000 0:00:03 1644.474484

778000 5000 0:00:03 1637.721039

779000 5000 0:00:02 1676.634257

780000 5000 0:00:02 1667.949876

781000 5000 0:00:03 1648.325203

154

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

782000 5000 0:00:03 1653.744309

783000 5000 0:00:03 1641.701315

784000 5000 0:00:03 1657.200736

785000 5000 0:00:03 1655.519502

786000 5000 0:00:03 1647.91993

787000 5000 0:00:03 1624.552314

788000 5000 0:00:03 1641.162455

789000 5000 0:00:03 1627.677285

790000 5000 0:00:03 1628.788113

791000 5000 0:00:03 1605.172508

792000 5000 0:00:03 1601.721145

793000 5000 0:00:03 1595.139546

794000 5000 0:00:03 1602.000322

795000 5000 0:00:03 1572.07393

796000 5000 0:00:03 1573.20517

797000 5000 0:00:03 1567.804569

798000 5000 0:00:03 1547.866375

799000 5000 0:00:03 1554.89172

800000 5000 0:00:03 1568.368147

801000 5000 0:00:03 1563.716767

802000 5000 0:00:03 1569.154687

803000 5000 0:00:03 1543.17606

804000 5000 0:00:03 1554.957001

805000 5000 0:00:03 1557.590669

806000 5000 0:00:03 1559.189159

807000 5000 0:00:03 1556.678024

808000 5000 0:00:03 1560.41733

809000 5000 0:00:03 1540.243956

810000 5000 0:00:03 1551.506125

811000 5000 0:00:03 1560.169497

812000 5000 0:00:03 1566.377764

813000 5000 0:00:03 1568.690937

814000 5000 0:00:03 1586.980665

815000 5000 0:00:03 1594.396907

155

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

816000 5000 0:00:03 1582.31203

817000 5000 0:00:03 1579.803289

818000 5000 0:00:03 1578.812089

819000 5000 0:00:03 1576.914974

820000 5000 0:00:03 1585.60675

821000 5000 0:00:03 1575.526651

822000 5000 0:00:03 1575.484454

823000 5000 0:00:03 1578.605725

824000 5000 0:00:03 1573.001753

825000 5000 0:00:03 1565.353836

826000 5000 0:00:03 1583.561366

827000 5000 0:00:03 1577.301496

828000 5000 0:00:03 1567.297891

829000 5000 0:00:03 1558.323693

830000 5000 0:00:03 1555.414117

831000 5000 0:00:03 1543.561466

832000 5000 0:00:03 1533.960662

833000 5000 0:00:03 1539.345833

834000 5000 0:00:03 1544.365291

835000 5000 0:00:03 1534.279329

836000 5000 0:00:03 1526.808

837000 5000 0:00:03 1538.224888

838000 5000 0:00:03 1533.351468

839000 5000 0:00:03 1531.109387

840000 5000 0:00:03 1510.18575

841000 5000 0:00:03 1528.478925

842000 5000 0:00:03 1522.095036

843000 5000 0:00:03 1516.456587

844000 5000 0:00:03 1524.390709

845000 5000 0:00:03 1524.371654

846000 5000 0:00:03 1527.734025

847000 5000 0:00:03 1535.142325

848000 5000 0:00:03 1538.845066

849000 5000 0:00:03 1527.384476

156

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

850000 5000 0:00:03 1544.085812

851000 5000 0:00:03 1542.38727

852000 5000 0:00:03 1493.732299

853000 5000 0:00:03 1493.038261

854000 5000 0:00:03 1506.429743

855000 5000 0:00:03 1501.548848

856000 5000 0:00:03 1494.576183

857000 5000 0:00:03 1486.337732

858000 5000 0:00:03 1485.737514

859000 5000 0:00:03 1483.591038

860000 5000 0:00:03 1499.82827

861000 5000 0:00:03 1474.635242

862000 5000 0:00:03 1478.374486

863000 5000 0:00:03 1473.456709

864000 5000 0:00:03 1449.657316

865000 5000 0:00:03 1450.026013

866000 5000 0:00:03 1445.984804

867000 5000 0:00:03 1435.641759

868000 5000 0:00:03 1437.236321

869000 5000 0:00:03 1446.807821

870000 5000 0:00:03 1456.544151

871000 5000 0:00:03 1444.051245

872000 5000 0:00:03 1445.819226

873000 5000 0:00:03 1437.80708

874000 5000 0:00:03 1447.292781

875000 5000 0:00:03 1447.287335

876000 5000 0:00:03 1430.671655

877000 5000 0:00:03 1439.844174

878000 5000 0:00:03 1434.265051

879000 5000 0:00:03 1447.943255

880000 5000 0:00:03 1449.741381

881000 5000 0:00:03 1458.23229

882000 5000 0:00:03 1457.4009

883000 5000 0:00:03 1469.586323

157

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

884000 5000 0:00:03 1462.556648

885000 5000 0:00:03 1465.133629

886000 5000 0:00:03 1464.374978

887000 5000 0:00:03 1467.773995

888000 5000 0:00:03 1445.570094

889000 5000 0:00:03 1461.4251

890000 5000 0:00:03 1451.312669

891000 5000 0:00:03 1458.198268

892000 5000 0:00:03 1450.265747

893000 5000 0:00:03 1452.426918

894000 5000 0:00:03 1458.753029

895000 5000 0:00:03 1461.412285

896000 5000 0:00:03 1430.807167

897000 5000 0:00:03 1433.807694

898000 5000 0:00:03 1436.435296

899000 5000 0:00:03 1426.954078

900000 5000 0:00:03 1412.663625

901000 5000 0:00:03 1413.547439

902000 5000 0:00:03 1427.580688

903000 5000 0:00:03 1419.73016

904000 5000 0:00:03 1414.090335

905000 5000 0:00:03 1404.800597

906000 5000 0:00:03 1376.728931

907000 5000 0:00:03 1413.521863

908000 5000 0:00:03 1413.150325

909000 5000 0:00:03 1398.712122

910000 5000 0:00:03 1413.469916

911000 5000 0:00:03 1422.955633

912000 5000 0:00:03 1409.536643

913000 5000 0:00:03 1411.530624

914000 5000 0:00:03 1426.556316

915000 5000 0:00:03 1433.97958

916000 5000 0:00:03 1417.150813

917000 5000 0:00:03 1414.497582

158

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

918000 5000 0:00:03 1408.18771

919000 5000 0:00:03 1405.331265

920000 5000 0:00:03 1404.231286

921000 5000 0:00:03 1417.348459

922000 5000 0:00:03 1394.860441

923000 5000 0:00:03 1405.935466

924000 5000 0:00:03 1391.846563

925000 5000 0:00:03 1383.912953

926000 5000 0:00:03 1390.153542

927000 5000 0:00:03 1395.074494

928000 5000 0:00:03 1384.133238

929000 5000 0:00:03 1372.976096

930000 5000 0:00:03 1373.549017

931000 5000 0:00:03 1363.668968

932000 5000 0:00:03 1358.358646

933000 5000 0:00:03 1359.188358

934000 5000 0:00:03 1358.271561

935000 5000 0:00:03 1358.816395

936000 5000 0:00:03 1355.341183

937000 5000 0:00:03 1354.355091

938000 5000 0:00:03 1354.32501

939000 5000 0:00:03 1357.203098

940000 5000 0:00:03 1357.536582

941000 5000 0:00:03 1364.265414

942000 5000 0:00:03 1371.980751

943000 5000 0:00:03 1364.832205

944000 5000 0:00:03 1374.08201

945000 5000 0:00:03 1365.028569

946000 5000 0:00:03 1377.244668

947000 5000 0:00:03 1366.813708

948000 5000 0:00:03 1371.502429

949000 5000 0:00:03 1375.269897

950000 5000 0:00:03 1378.2906

951000 5000 0:00:03 1364.003405

159

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

952000 5000 0:00:03 1380.629655

953000 5000 0:00:03 1371.022185

954000 5000 0:00:03 1375.575231

955000 5000 0:00:03 1369.25079

956000 5000 0:00:03 1369.841997

957000 5000 0:00:03 1358.758421

958000 5000 0:00:03 1356.98062

959000 5000 0:00:03 1347.151153

960000 5000 0:00:03 1347.694001

961000 5000 0:00:03 1344.236706

962000 5000 0:00:03 1340.407468

963000 5000 0:00:03 1339.328884

964000 5000 0:00:03 1341.925233

965000 5000 0:00:03 1339.968141

966000 5000 0:00:03 1337.941919

967000 5000 0:00:03 1335.128815

968000 5000 0:00:03 1330.751675

969000 5000 0:00:03 1338.083351

970000 5000 0:00:03 1334.027383

971000 5000 0:00:03 1339.869036

972000 5000 0:00:03 1337.861728

973000 5000 0:00:03 1344.805058

974000 5000 0:00:03 1351.03112

975000 5000 0:00:03 1324.952216

976000 5000 0:00:03 1339.271126

977000 5000 0:00:03 1343.004758

978000 5000 0:00:03 1352.618426

979000 5000 0:00:03 1355.724846

980000 5000 0:00:03 1356.150291

981000 5000 0:00:03 1355.784768

982000 5000 0:00:03 1353.757381

983000 5000 0:00:03 1355.905729

984000 5000 0:00:03 1321.934032

985000 5000 0:00:03 1319.559943

160

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

986000 5000 0:00:03 1315.816483

987000 5000 0:00:03 1307.752987

988000 5000 0:00:03 1300.317069

989000 5000 0:00:03 1287.228913

990000 5000 0:00:03 1286.680031

991000 5000 0:00:03 1271.833243

992000 5000 0:00:03 1270.21677

993000 5000 0:00:03 1273.505408

994000 5000 0:00:03 1277.40872

995000 5000 0:00:03 1276.995363

996000 5000 0:00:03 1278.845315

997000 5000 0:00:03 1269.82321

998000 5000 0:00:03 1277.778587

999000 5000 0:00:03 1274.473069

1000000 5000 0:00:03 1264.268215

1001000 5000 0:00:03 1276.60574

1002000 5000 0:00:03 1274.904299

1003000 5000 0:00:03 1280.094379

1004000 5000 0:00:03 1285.769133

1005000 5000 0:00:03 1283.733302

1006000 5000 0:00:03 1298.24944

1007000 5000 0:00:03 1284.746945

1008000 5000 0:00:03 1275.794654

1009000 5000 0:00:03 1289.265217

1010000 5000 0:00:03 1290.920235

1011000 5000 0:00:03 1278.846951

1012000 5000 0:00:03 1286.17992

1013000 5000 0:00:03 1282.285381

1014000 5000 0:00:03 1284.365115

1015000 5000 0:00:03 1285.965563

1016000 5000 0:00:03 1285.732102

1017000 5000 0:00:03 1280.295308

1018000 5000 0:00:03 1262.603944

1019000 5000 0:00:03 1263.489966

161

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

1020000 5000 0:00:03 1257.09378

1021000 5000 0:00:03 1257.507951

1022000 5000 0:00:03 1252.061519

1023000 5000 0:00:03 1259.436009

1024000 5000 0:00:03 1250.226916

1025000 5000 0:00:04 1243.337576

1026000 5000 0:00:04 1246.469065

1027000 5000 0:00:04 1244.655759

1028000 5000 0:00:04 1249.793159

1029000 5000 0:00:03 1255.628354

1030000 5000 0:00:03 1264.315848

1031000 5000 0:00:03 1254.787642

1032000 5000 0:00:03 1257.740766

1033000 5000 0:00:03 1263.901335

1034000 5000 0:00:03 1271.548293

1035000 5000 0:00:03 1266.36171

1036000 5000 0:00:03 1264.875249

1037000 5000 0:00:03 1259.672712

1038000 5000 0:00:03 1264.782781

1039000 5000 0:00:03 1261.776794

1040000 5000 0:00:03 1259.928552

1041000 5000 0:00:03 1263.122261

1042000 5000 0:00:03 1272.228698

1043000 5000 0:00:03 1262.802609

1044000 5000 0:00:03 1258.122438

1045000 5000 0:00:03 1259.090634

1046000 5000 0:00:04 1249.048537

1047000 5000 0:00:04 1244.757703

1048000 5000 0:00:04 1231.023162

1049000 5000 0:00:04 1219.460442

1050000 5000 0:00:04 1220.637861

1051000 5000 0:00:04 1220.096056

1052000 5000 0:00:04 1217.078039

1053000 5000 0:00:04 1205.392637

162

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

1054000 5000 0:00:04 1210.603336

1055000 5000 0:00:04 1205.187222

1056000 5000 0:00:04 1215.369564

1057000 5000 0:00:04 1212.903645

1058000 5000 0:00:04 1207.534046

1059000 5000 0:00:04 1212.032477

1060000 5000 0:00:04 1212.082425

1061000 5000 0:00:04 1231.332385

1062000 5000 0:00:04 1229.694062

1063000 5000 0:00:04 1223.724494

1064000 5000 0:00:04 1219.372413

1065000 5000 0:00:04 1217.23389

1066000 5000 0:00:04 1226.207588

1067000 5000 0:00:04 1220.580352

1068000 5000 0:00:04 1223.73857

1069000 5000 0:00:04 1228.830024

1070000 5000 0:00:04 1214.957881

1071000 5000 0:00:04 1223.864077

1072000 5000 0:00:04 1217.763665

1073000 5000 0:00:04 1215.846566

1074000 5000 0:00:04 1198.645531

1075000 5000 0:00:04 1200.944423

1076000 5000 0:00:04 1203.813295

1077000 5000 0:00:04 1200.789543

1078000 5000 0:00:04 1204.827406

1079000 5000 0:00:04 1195.222076

1080000 5000 0:00:04 1178.777108

1081000 5000 0:00:04 1186.271142

1082000 5000 0:00:04 1191.26583

1083000 5000 0:00:04 1196.825062

1084000 5000 0:00:04 1189.87049

1085000 5000 0:00:04 1180.269668

1086000 5000 0:00:04 1197.215946

1087000 5000 0:00:04 1210.383835

163

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

1088000 5000 0:00:04 1213.753969

1089000 5000 0:00:04 1201.158493

1090000 5000 0:00:04 1208.340936

1091000 5000 0:00:04 1206.404755

1092000 5000 0:00:04 1208.895439

1093000 5000 0:00:04 1215.706145

1094000 5000 0:00:04 1217.728372

1095000 5000 0:00:04 1204.223839

1096000 5000 0:00:04 1219.372116

1097000 5000 0:00:04 1212.602726

1098000 5000 0:00:04 1203.117518

1099000 5000 0:00:04 1201.527382

1100000 5000 0:00:04 1181.414181

1101000 5000 0:00:04 1188.353565

1102000 5000 0:00:04 1179.500656

1103000 5000 0:00:04 1187.10904

1104000 5000 0:00:04 1178.340129

1105000 5000 0:00:04 1181.408877

1106000 5000 0:00:04 1148.897323

1107000 5000 0:00:04 1167.548867

1108000 5000 0:00:04 1164.208867

1109000 5000 0:00:04 1178.281815

1110000 5000 0:00:04 1172.563606

1111000 5000 0:00:04 1176.922804

1112000 5000 0:00:04 1176.732792

1113000 5000 0:00:04 1180.944562

1114000 5000 0:00:04 1189.936469

1115000 5000 0:00:04 1166.44547

1116000 5000 0:00:04 1168.213381

1117000 5000 0:00:04 1173.930203

1118000 5000 0:00:04 1172.847455

1119000 5000 0:00:04 1160.50612

1120000 5000 0:00:04 1161.712736

1121000 5000 0:00:04 1157.322751

164

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

1122000 5000 0:00:04 1153.506047

1123000 5000 0:00:04 1155.235458

1124000 5000 0:00:04 1161.487131

1125000 5000 0:00:04 1155.355048

1126000 5000 0:00:04 1147.113392

1127000 5000 0:00:04 1144.661653

1128000 5000 0:00:04 1135.849922

1129000 5000 0:00:04 1136.27919

1130000 5000 0:00:04 1142.382173

1131000 5000 0:00:04 1142.481625

1132000 5000 0:00:04 1136.234261

1133000 5000 0:00:04 1135.228923

1134000 5000 0:00:04 1133.267755

1135000 5000 0:00:04 1137.521582

1136000 5000 0:00:04 1130.31491

1137000 5000 0:00:04 1132.415111

1138000 5000 0:00:04 1132.845379

1139000 5000 0:00:04 1135.97792

1140000 5000 0:00:04 1134.171592

1141000 5000 0:00:04 1142.486324

1142000 5000 0:00:04 1147.158923

1143000 5000 0:00:04 1137.480694

1144000 5000 0:00:04 1130.604747

1145000 5000 0:00:04 1143.354731

1146000 5000 0:00:04 1138.830239

1147000 5000 0:00:04 1140.278159

1148000 5000 0:00:04 1142.458653

1149000 5000 0:00:04 1142.949885

1150000 5000 0:00:04 1149.1075

1151000 5000 0:00:04 1136.769256

1152000 5000 0:00:04 1127.267612

1153000 5000 0:00:04 1124.004441

1154000 5000 0:00:04 1126.839283

1155000 5000 0:00:04 1110.877333

165

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

1156000 5000 0:00:04 1101.178724

1157000 5000 0:00:04 1126.133989

1158000 5000 0:00:04 1119.38987

1159000 5000 0:00:04 1114.476583

1160000 5000 0:00:04 1103.696478

1161000 5000 0:00:04 1115.10318

1162000 5000 0:00:04 1111.706986

1163000 5000 0:00:04 1127.924454

1164000 5000 0:00:04 1121.534403

1165000 5000 0:00:04 1121.410645

1166000 5000 0:00:04 1133.201489

1167000 5000 0:00:04 1124.952021

1168000 5000 0:00:04 1132.488723

1169000 5000 0:00:04 1122.868039

1170000 5000 0:00:04 1114.994264

1171000 5000 0:00:04 1117.044604

1172000 5000 0:00:04 1128.181755

1173000 5000 0:00:04 1122.805757

1174000 5000 0:00:04 1118.840559

1175000 5000 0:00:04 1119.06643

1176000 5000 0:00:04 1128.149427

1177000 5000 0:00:04 1119.065178

1178000 5000 0:00:04 1107.930612

1179000 5000 0:00:04 1104.282474

1180000 5000 0:00:04 1091.396608

1181000 5000 0:00:04 1095.957189

1182000 5000 0:00:04 1098.971868

1183000 5000 0:00:04 1094.521809

1184000 5000 0:00:04 1075.543139

1185000 5000 0:00:04 1086.558275

1186000 5000 0:00:04 1083.780573

1187000 5000 0:00:04 1090.009021

1188000 5000 0:00:04 1091.925018

1189000 5000 0:00:04 1091.759552

166

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

1190000 5000 0:00:04 1095.752796

1191000 5000 0:00:04 1097.252086

1192000 5000 0:00:04 1094.356513

1193000 5000 0:00:04 1101.417171

1194000 5000 0:00:04 1095.780413

1195000 5000 0:00:04 1091.079141

1196000 5000 0:00:04 1097.546654

1197000 5000 0:00:04 1096.328462

1198000 5000 0:00:04 1090.992482

1199000 5000 0:00:04 1093.709943

1200000 5000 0:00:04 1087.540957

1201000 5000 0:00:04 1088.334211

1202000 5000 0:00:04 1076.8969

1203000 5000 0:00:04 1072.620483

1204000 5000 0:00:04 1067.266613

1205000 5000 0:00:04 1063.112526

1206000 5000 0:00:04 1067.996793

1207000 5000 0:00:04 1075.349295

1208000 5000 0:00:04 1072.256813

1209000 5000 0:00:04 1072.174958

1210000 5000 0:00:04 1049.487315

1211000 5000 0:00:04 1072.847412

1212000 5000 0:00:04 1072.577685

1213000 5000 0:00:04 1074.325721

1214000 5000 0:00:04 1076.633479

1215000 5000 0:00:04 1085.636058

1216000 5000 0:00:04 1085.689805

1217000 5000 0:00:04 1073.957204

1218000 5000 0:00:04 1086.387113

1219000 5000 0:00:04 1082.898712

1220000 5000 0:00:04 1084.56929

1221000 5000 0:00:04 1087.467158

1222000 5000 0:00:04 1084.858264

1223000 5000 0:00:04 1076.879041

167

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

1224000 5000 0:00:04 1085.855559

1225000 5000 0:00:04 1083.678395

1226000 5000 0:00:04 1058.591337

1227000 5000 0:00:04 1072.908188

1228000 5000 0:00:04 1064.678132

1229000 5000 0:00:04 1059.815117

1230000 5000 0:00:04 1061.476697

1231000 5000 0:00:04 1054.878359

1232000 5000 0:00:04 1049.419472

1233000 5000 0:00:04 1060.662469

1234000 5000 0:00:04 1058.746677

1235000 5000 0:00:04 1058.314617

1236000 5000 0:00:04 1066.971678

1237000 5000 0:00:04 1064.723702

1238000 5000 0:00:04 1068.496845

1239000 5000 0:00:04 1065.781301

1240000 5000 0:00:04 1075.808341

1241000 5000 0:00:04 1070.911933

1242000 5000 0:00:04 1068.363056

1243000 5000 0:00:04 1079.033135

1244000 5000 0:00:04 1063.762793

1245000 5000 0:00:04 1071.891782

1246000 5000 0:00:04 1050.177701

1247000 5000 0:00:04 1054.492369

1248000 5000 0:00:04 1053.344749

1249000 5000 0:00:04 1048.601197

1250000 5000 0:00:04 1030.632883

1251000 5000 0:00:04 1021.058932

1252000 5000 0:00:04 1026.778591

1253000 5000 0:00:04 1023.293433

1254000 5000 0:00:04 1028.74414

1255000 5000 0:00:04 1021.459433

1256000 5000 0:00:04 1013.73263

1257000 5000 0:00:04 1015.585995

168

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

1258000 5000 0:00:04 1011.340566

1259000 5000 0:00:04 1012.596498

1260000 5000 0:00:04 1032.496804

1261000 5000 0:00:04 1023.673054

1262000 5000 0:00:04 1041.772797

1263000 5000 0:00:04 1038.408875

1264000 5000 0:00:04 1032.341824

1265000 5000 0:00:04 1038.806918

1266000 5000 0:00:04 1039.193818

1267000 5000 0:00:04 1034.797765

1268000 5000 0:00:05 997.303093

1269000 5000 0:00:04 1023.052022

1270000 5000 0:00:05 986.281806

1271000 5000 0:00:04 1023.754378

1272000 5000 0:00:04 1016.614945

1273000 5000 0:00:04 1004.441641

1274000 5000 0:00:04 1004.20884

1275000 5000 0:00:04 1008.934112

1276000 5000 0:00:04 1003.149488

1277000 5000 0:00:05 999.327453

1278000 5000 0:00:04 1009.189274

1279000 5000 0:00:05 993.960695

1280000 5000 0:00:05 991.216828

1281000 5000 0:00:05 998.70488

1282000 5000 0:00:05 993.104478

1283000 5000 0:00:04 1007.372354

1284000 5000 0:00:05 995.57923

1285000 5000 0:00:04 1010.100806

1286000 5000 0:00:04 1017.098649

1287000 5000 0:00:04 1022.783526

1288000 5000 0:00:04 1003.124734

1289000 5000 0:00:04 1015.231518

1290000 5000 0:00:05 961.883815

1291000 5000 0:00:05 991.641258

169

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

1292000 5000 0:00:05 998.773307

1293000 5000 0:00:04 1001.282844

1294000 5000 0:00:05 996.123089

1295000 5000 0:00:05 995.71385

1296000 5000 0:00:05 985.103851

1297000 5000 0:00:05 988.762125

1298000 5000 0:00:05 979.556845

1299000 5000 0:00:05 989.250801

1300000 5000 0:00:05 991.844656

1301000 5000 0:00:05 982.018071

1302000 5000 0:00:05 986.6917

1303000 5000 0:00:05 977.840377

1304000 5000 0:00:05 966.769428

1305000 5000 0:00:05 980.729451

1306000 5000 0:00:05 972.118287

1307000 5000 0:00:05 982.614407

1308000 5000 0:00:04 1002.914067

1309000 5000 0:00:05 999.855021

1310000 5000 0:00:05 996.736088

1311000 5000 0:00:05 999.507443

1312000 5000 0:00:05 987.415781

1313000 5000 0:00:05 990.078424

1314000 5000 0:00:05 996.681449

1315000 5000 0:00:05 983.083686

1316000 5000 0:00:05 981.656569

1317000 5000 0:00:05 971.432124

1318000 5000 0:00:05 974.959149

1319000 5000 0:00:05 971.851677

1320000 5000 0:00:07 668.67805

1321000 5000 0:00:05 895.401843

1322000 5000 0:00:05 953.11585

1323000 5000 0:00:05 936.18951

1324000 5000 0:00:05 922.185269

1325000 5000 0:00:03 1516.186197

170

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

1326000 5000 0:00:02 1928.092187

1327000 5000 0:00:02 1901.224541

1328000 5000 0:00:02 1906.755099

1329000 5000 0:00:02 1913.127922

1330000 5000 0:00:02 1916.952996

1331000 5000 0:00:02 1883.545647

1332000 5000 0:00:02 1870.468556

1333000 5000 0:00:02 1906.627858

1334000 5000 0:00:02 1868.525326

1335000 5000 0:00:02 1880.638153

1336000 5000 0:00:02 1890.845999

1337000 5000 0:00:02 1870.530134

1338000 5000 0:00:02 1875.092583

1339000 5000 0:00:02 1876.874059

1340000 5000 0:00:02 1892.33521

1341000 5000 0:00:02 1849.47425

1342000 5000 0:00:02 1865.947356

1343000 5000 0:00:02 1867.186292

1344000 5000 0:00:02 1871.167148

1345000 5000 0:00:02 1879.782637

1346000 5000 0:00:02 1905.702051

1347000 5000 0:00:02 1889.685454

1348000 5000 0:00:02 1856.668876

1349000 5000 0:00:02 1857.546263

1350000 5000 0:00:02 1885.087338

1351000 5000 0:00:02 1872.547665

1352000 5000 0:00:02 1864.253974

1353000 5000 0:00:02 1900.227419

1354000 5000 0:00:02 1842.090817

1355000 5000 0:00:02 1882.799497

1356000 5000 0:00:02 1922.824737

1357000 5000 0:00:02 1855.49343

1358000 5000 0:00:02 1877.26445

1359000 5000 0:00:02 1882.040478

171

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

1360000 5000 0:00:02 1856.838495

1361000 5000 0:00:02 1893.897068

1362000 5000 0:00:02 1867.850336

1363000 5000 0:00:02 1863.68487

1364000 5000 0:00:02 1868.600743

1365000 5000 0:00:02 1864.637047

1366000 5000 0:00:02 1861.099448

1367000 5000 0:00:02 1874.627886

1368000 5000 0:00:02 1887.568136

1369000 5000 0:00:02 1854.029994

1370000 5000 0:00:02 1882.27641

1371000 5000 0:00:02 1853.369556

1372000 5000 0:00:02 1869.967683

1373000 5000 0:00:02 1855.515464

1374000 5000 0:00:02 1887.311642

1375000 5000 0:00:02 1880.136769

1376000 5000 0:00:02 1864.060759

1377000 5000 0:00:02 1836.649833

1378000 5000 0:00:02 1814.222854

1379000 5000 0:00:02 1813.268191

1380000 5000 0:00:02 1823.642134

1381000 5000 0:00:02 1830.377457

1382000 5000 0:00:02 1837.213344

1383000 5000 0:00:02 1820.119749

1384000 5000 0:00:02 1816.342359

1385000 5000 0:00:02 1840.816498

1386000 5000 0:00:02 1845.373225

1387000 5000 0:00:02 1804.201552

1388000 5000 0:00:02 1797.982951

1389000 5000 0:00:02 1812.664069

1390000 5000 0:00:02 1820.771949

1391000 5000 0:00:02 1805.758202

1392000 5000 0:00:02 1822.181341

1393000 5000 0:00:02 1825.569733

172

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

1394000 5000 0:00:02 1792.308702

1395000 5000 0:00:02 1832.606766

1396000 5000 0:00:02 1816.916584

1397000 5000 0:00:02 1863.848825

1398000 5000 0:00:02 1795.201283

1399000 5000 0:00:02 1814.359787

1400000 5000 0:00:02 1807.811554

1401000 5000 0:00:02 1818.51378

1402000 5000 0:00:02 1778.570151

1403000 5000 0:00:02 1826.327905

1404000 5000 0:00:02 1832.420055

1405000 5000 0:00:02 1849.274511

1406000 5000 0:00:02 1842.17769

1407000 5000 0:00:02 1830.430393

1408000 5000 0:00:02 1820.999401

1409000 5000 0:00:02 1819.148944

1410000 5000 0:00:02 1805.378729

1411000 5000 0:00:02 1798.768851

1412000 5000 0:00:02 1822.651623

1413000 5000 0:00:02 1797.014943

1414000 5000 0:00:02 1760.001295

1415000 5000 0:00:02 1797.55633

1416000 5000 0:00:02 1847.361395

1417000 5000 0:00:02 1777.712042

1418000 5000 0:00:02 1842.464156

1419000 5000 0:00:02 1796.636553

1420000 5000 0:00:02 1793.813997

1421000 5000 0:00:02 1792.703267

1422000 5000 0:00:02 1783.679617

1423000 5000 0:00:02 1784.065936

1424000 5000 0:00:02 1766.511673

1425000 5000 0:00:02 1770.608466

1426000 5000 0:00:02 1770.125799

1427000 5000 0:00:02 1784.357537

173

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

1428000 5000 0:00:02 1765.294245

1429000 5000 0:00:02 1790.782841

1430000 5000 0:00:02 1800.886757

1431000 5000 0:00:02 1813.917463

1432000 5000 0:00:02 1777.640623

1433000 5000 0:00:02 1810.136912

1434000 5000 0:00:02 1798.077352

1435000 5000 0:00:02 1759.994481

1436000 5000 0:00:02 1769.523775

1437000 5000 0:00:02 1800.314191

1438000 5000 0:00:02 1813.622043

1439000 5000 0:00:02 1786.63951

1440000 5000 0:00:02 1788.801246

1441000 5000 0:00:02 1807.667765

1442000 5000 0:00:02 1744.338575

1443000 5000 0:00:02 1772.2358

1444000 5000 0:00:02 1759.851384

1445000 5000 0:00:02 1745.601608

1446000 5000 0:00:02 1775.464151

1447000 5000 0:00:02 1752.307789

1448000 5000 0:00:02 1768.730055

1449000 5000 0:00:02 1727.829528

1450000 5000 0:00:02 1723.634511

1451000 5000 0:00:02 1776.419804

1452000 5000 0:00:02 1740.531941

1453000 5000 0:00:02 1777.805591

1454000 5000 0:00:02 1779.673565

1455000 5000 0:00:02 1721.563303

1456000 5000 0:00:02 1723.824076

1457000 5000 0:00:02 1739.488618

1458000 5000 0:00:02 1751.359493

1459000 5000 0:00:02 1735.168818

1460000 5000 0:00:02 1731.276162

1461000 5000 0:00:05 933.716755

174

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

1462000 5000 0:00:03 1539.456264

1463000 5000 0:00:02 1791.953484

1464000 5000 0:00:02 1754.718438

1465000 5000 0:00:02 1733.407477

1466000 5000 0:00:02 1755.080607

1467000 5000 0:00:02 1748.043328

1468000 5000 0:00:02 1778.904259

1469000 5000 0:00:02 1788.677102

1470000 5000 0:00:02 1768.700649

1471000 5000 0:00:02 1754.211775

1472000 5000 0:00:02 1735.769382

1473000 5000 0:00:02 1772.177382

1474000 5000 0:00:02 1760.884556

1475000 5000 0:00:02 1762.471069

1476000 5000 0:00:02 1718.501838

1477000 5000 0:00:02 1729.785382

1478000 5000 0:00:02 1689.8777

1479000 5000 0:00:02 1757.532874

1480000 5000 0:00:02 1731.622721

1481000 5000 0:00:02 1711.154985

1482000 5000 0:00:03 1638.322594

1483000 5000 0:00:02 1739.782778

1484000 5000 0:00:02 1717.649953

1485000 5000 0:00:02 1737.559681

1486000 5000 0:00:02 1728.839181

1487000 5000 0:00:02 1736.759381

1488000 5000 0:00:02 1725.581469

1489000 5000 0:00:02 1736.706295

1490000 5000 0:00:02 1718.575672

1491000 5000 0:00:02 1740.628889

1492000 5000 0:00:02 1743.5077

1493000 5000 0:00:02 1734.235367

1494000 5000 0:00:02 1718.513651

1495000 5000 0:00:02 1721.209501

175

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

1496000 5000 0:00:02 1726.062789

1497000 5000 0:00:04 1205.88685

1498000 5000 0:00:06 820.790559

1499000 5000 0:00:06 717.949719

1500000 5000 0:00:04 1118.487662

1501000 5000 0:00:04 1018.050649

1502000 5000 0:00:06 832.176192

1503000 5000 0:00:04 1044.53413

1504000 5000 0:00:04 1139.705044

1505000 5000 0:00:03 1331.157335

1506000 5000 0:00:03 1548.225362

1507000 5000 0:00:02 1671.175498

1508000 5000 0:00:04 1009.730368

1509000 5000 0:00:05 932.743243

1510000 5000 0:00:05 913.580743

1511000 5000 0:00:05 900.155961

1512000 5000 0:00:05 887.932448

1513000 5000 0:00:06 828.200286

1514000 5000 0:00:05 876.94513

1515000 5000 0:00:05 902.483092

1516000 5000 0:00:05 946.031012

1517000 5000 0:00:06 807.948664

1518000 5000 0:00:05 899.080708

1519000 5000 0:00:05 916.545759

1520000 5000 0:00:05 913.825522

1521000 5000 0:00:06 833.064115

1522000 5000 0:00:06 789.880057

1523000 5000 0:00:07 688.724492

1524000 5000 0:00:06 763.372414

1525000 5000 0:00:04 1024.987557

1526000 5000 0:00:07 646.395698

1527000 5000 0:00:05 900.393598

1528000 5000 0:00:05 952.715764

1529000 5000 0:00:06 828.857091

176

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

1530000 5000 0:00:05 956.115997

1531000 5000 0:00:05 975.285486

1532000 5000 0:00:05 936.762709

1533000 5000 0:00:05 842.117461

1534000 5000 0:00:08 620.019077

1535000 5000 0:00:06 775.29621

1536000 5000 0:00:06 781.772322

1537000 5000 0:00:05 970.701699

1538000 5000 0:00:03 1253.843972

1539000 5000 0:00:04 1059.298693

1540000 5000 0:00:04 1023.641198

1541000 5000 0:00:04 1056.212027

1542000 5000 0:00:03 1582.460764

1543000 5000 0:00:03 1574.771902

1544000 5000 0:00:03 1389.042069

1545000 5000 0:00:03 1330.815076

1546000 5000 0:00:05 931.180023

1547000 5000 0:00:06 831.712603

1548000 5000 0:00:06 803.483648

1549000 5000 0:00:03 1497.619384

1550000 5000 0:00:03 1472.06463

1551000 5000 0:00:03 1330.719445

1552000 5000 0:00:03 1592.257299

1553000 5000 0:00:03 1607.98797

1554000 5000 0:00:07 686.018329

1555000 5000 0:00:04 1196.533499

1556000 5000 0:00:03 1258.088882

1557000 5000 0:00:05 856.625993

1558000 5000 0:00:04 1066.71218

1559000 5000 0:00:03 1566.256568

1560000 5000 0:00:05 932.937469

1561000 5000 0:00:04 1249.150266

1562000 5000 0:00:05 864.098405

1563000 5000 0:00:04 1116.875429

177

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

1564000 5000 0:00:03 1558.12799

1565000 5000 0:00:05 859.083945

1566000 5000 0:00:07 706.44109

1567000 5000 0:00:04 1023.132829

1568000 5000 0:00:04 1237.650415

1569000 5000 0:00:04 1231.512534

1570000 5000 0:00:03 1557.96826

1571000 5000 0:00:03 1598.007221

1572000 5000 0:00:03 1606.432929

1573000 5000 0:00:03 1265.912841

1574000 5000 0:00:03 1381.897638

1575000 5000 0:00:03 1589.741715

1576000 5000 0:00:05 954.768237

1577000 5000 0:00:05 848.91128

1578000 5000 0:00:04 1164.456412

1579000 5000 0:00:05 953.224874

1580000 5000 0:00:03 1530.759229

1581000 5000 0:00:03 1545.134141

1582000 5000 0:00:03 1629.795265

1583000 5000 0:00:03 1594.86123

1584000 5000 0:00:03 1561.119385

1585000 5000 0:00:03 1596.561135

1586000 5000 0:00:03 1592.774664

1587000 5000 0:00:03 1594.330306

1588000 5000 0:00:03 1597.455828

1589000 5000 0:00:03 1595.938401

1590000 5000 0:00:03 1612.656645

1591000 5000 0:00:03 1599.722544

1592000 5000 0:00:03 1620.967802

1593000 5000 0:00:03 1585.355375

1594000 5000 0:00:03 1602.73876

1595000 5000 0:00:03 1593.833268

1596000 5000 0:00:03 1625.236147

1597000 5000 0:00:03 1585.304104

178

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

1598000 5000 0:00:03 1590.51392

1599000 5000 0:00:03 1585.925608

1600000 5000 0:00:03 1611.576534

1601000 5000 0:00:03 1599.310633

1602000 5000 0:00:03 1618.138687

1603000 5000 0:00:03 1619.254884

1604000 5000 0:00:03 1573.884596

1605000 5000 0:00:03 1588.0341

1606000 5000 0:00:04 1167.462721

1607000 5000 0:00:03 1474.46782

1608000 5000 0:00:03 1613.791332

1609000 5000 0:00:03 1578.12143

1610000 5000 0:00:03 1585.802878

1611000 5000 0:00:04 1077.13098

1612000 5000 0:00:03 1460.81282

1613000 5000 0:00:03 1522.059822

1614000 5000 0:00:03 1381.159765

1615000 5000 0:00:03 1496.494312

1616000 5000 0:00:03 1536.505685

1617000 5000 0:00:03 1520.022034

1618000 5000 0:00:03 1561.397263

1619000 5000 0:00:03 1535.979396

1620000 5000 0:00:03 1528.735488

1621000 5000 0:00:03 1360.477582

1622000 5000 0:00:03 1498.407043

1623000 5000 0:00:03 1520.285935

1624000 5000 0:00:03 1508.241939

1625000 5000 0:00:03 1444.107133

1626000 5000 0:00:05 914.226535

1627000 5000 0:00:03 1555.737888

1628000 5000 0:00:03 1563.245961

1629000 5000 0:00:03 1309.351256

1630000 5000 0:00:03 1565.594005

1631000 5000 0:00:03 1612.402341

179

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

1632000 5000 0:00:03 1591.53811

1633000 5000 0:00:03 1411.698007

1634000 5000 0:00:06 782.236596

1635000 5000 0:00:05 895.865652

1636000 5000 0:00:03 1552.618071

1637000 5000 0:00:04 1046.081348

1638000 5000 0:00:06 806.387102

1639000 5000 0:00:05 938.367814

1640000 5000 0:00:03 1509.440797

1641000 5000 0:00:07 653.841522

1642000 5000 0:00:06 761.758272

1643000 5000 0:00:06 779.165367

1644000 5000 0:00:07 707.64417

1645000 5000 0:00:07 704.180622

1646000 5000 0:00:08 598.11925

1647000 5000 0:00:04 1043.461856

1648000 5000 0:00:05 915.991993

1649000 5000 0:00:03 1275.319557

1650000 5000 0:00:03 1502.207945

1651000 5000 0:00:03 1396.140676

1652000 5000 0:00:06 807.591098

1653000 5000 0:00:04 1148.888347

1654000 5000 0:00:04 1209.548466

1655000 5000 0:00:03 1466.106262

1656000 5000 0:00:07 651.721222

1657000 5000 0:00:07 638.200784

1658000 5000 0:00:03 1414.692487

1659000 5000 0:00:03 1268.05038

1660000 5000 0:00:03 1553.671746

1661000 5000 0:00:03 1511.01591

1662000 5000 0:00:06 756.686078

1663000 5000 0:00:06 772.802544

1664000 5000 0:00:05 954.712816

1665000 5000 0:00:07 625.940397

180

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

1666000 5000 0:00:06 740.73701

1667000 5000 0:00:04 1204.862826

1668000 5000 0:00:06 784.182475

1669000 5000 0:00:07 710.875037

1670000 5000 0:00:05 902.490911

1671000 5000 0:00:03 1419.627371

1672000 5000 0:00:03 1487.436959

1673000 5000 0:00:04 1145.464613

1674000 5000 0:00:03 1369.153305

1675000 5000 0:00:06 808.58785

1676000 5000 0:00:03 1528.742499

1677000 5000 0:00:04 1121.851971

1678000 5000 0:00:03 1494.726753

1679000 5000 0:00:03 1489.958129

1680000 5000 0:00:03 1465.726335

1681000 5000 0:00:03 1520.952798

1682000 5000 0:00:04 1230.005946

1683000 5000 0:00:04 1038.777135

1684000 5000 0:00:04 1107.358642

1685000 5000 0:00:03 1474.064861

1686000 5000 0:00:03 1468.016616

1687000 5000 0:00:03 1469.540107

1688000 5000 0:00:06 719.018189

1689000 5000 0:00:03 1499.285441

1690000 5000 0:00:05 838.554875

1691000 5000 0:00:06 826.98553

1692000 5000 0:00:06 818.555809

1693000 5000 0:00:05 834.537014

1694000 5000 0:00:05 888.657285

1695000 5000 0:00:05 967.084879

1696000 5000 0:00:04 1121.593524

1697000 5000 0:00:03 1433.042932

1698000 5000 0:00:03 1436.769223

1699000 5000 0:00:05 851.616982

181

B: Data Tables Unix Pipe Transfer Speeds for Increasing Payload Length

Payload
(bytes) Total Messages Final Rate

(bytes/sec)
Avg. Rate

(bytes/sec)

182

B: Data Tables Broadcast Policy Throughput

B.3 Broadcast Policy Throughput

Total Messages
Payload

Size
(kiB)

Input Rate
(bytes/sec)

Output A Rate
(bytes/sec)

Output B Rate
(bytes/sec)

Delta Rate
Input / Output

(bytes/sec)

1000 125 194.789118 186.214552 186.217685

2000 250 319.579995 308.383092 308.439943

3000 375 405.679513 393.631629 393.699184

4000 500 469.921665 457.83648 457.872572

5000 625 516.91175 505.204026 505.277142

6000 750 557.304201 545.972406 545.99801

7000 875 588.297881 577.487688 577.534169

8000 1000 614.60997 604.276047 604.320301

9000 1125 636.717639 626.76063 626.776267

10000 1250 656.952917 647.489717 647.516435

11000 1375 671.040468 662.060541 662.10503

12000 1500 684.757816 676.197313 676.238253

13000 1625 696.102522 687.936554 687.992165

14000 1750 706.178248 698.430692 698.478827

15000 1875 716.737092 709.286881 709.346468

16000 2000 727.907264 720.669872 720.700328

17000 2125 732.653839 725.716549 725.739574

18000 2250 741.069953 734.365485 734.40945

19000 2375 746.180469 739.717441 739.74766

20000 2500 753.378271 747.13386 747.175653

21000 2625 757.258458 751.301117 751.297353

22000 2750 762.787667 756.981195 757.021212

23000 2875 766.245155 760.659294 760.670516

24000 3000 771.731476 766.21406 766.262383

25000 3125 775.789147 770.49596 770.53458

26000 3250 779.414605 774.177217 774.306718

27000 3375 781.176697 776.203949 776.229169

28000 3500 785.952447 781.228308 781.250654

29000 3625 787.994764 783.373917 783.370235

30000 3750 791.44033 786.871842 786.891597

31000 3875 793.489171 788.995736 789.021123

32000 4000 794.327193 789.871417 789.999025

33000 4125 800.858209 796.617471 796.630453

183

B: Data Tables Broadcast Policy Throughput

Total Messages
Payload

Size
(kiB)

Input Rate
(bytes/sec)

Output A Rate
(bytes/sec)

Output B Rate
(bytes/sec)

Delta Rate
Input / Output

(bytes/sec)

34000 4250 802.433393 798.091268 798.211548

35000 4375 803.334674 799.255901 799.267803

36000 4500 803.653695 799.624018 799.733652

37000 4625 808.208815 804.202688 804.310132

38000 4750 811.207801 807.45226 807.472354

39000 4875 811.567509 807.795725 807.80364

40000 5000 812.413945 808.751748 808.772486

41000 5125 814.721355 811.137814 811.151921

42000 5250 816.953354 813.41747 813.430059

43000 5375 817.040578 813.592063 813.59739

44000 5500 819.830431 816.468948 816.488631

45000 5625 821.882981 818.493552 818.490931

46000 5750 823.004346 819.760002 819.772157

47000 5875 824.273905 821.060306 821.075469

48000 6000 826.321436 822.971452 822.981784

49000 6125 825.761633 822.422164 822.435366

50000 6250 826.040347 822.878606 822.896135

51000 6375 828.678099 825.430881 825.440865

52000 6500 829.015055 824.780884 824.804001

53000 6625 830.03543 827.101547 827.102529

54000 6750 830.895578 828.062124 828.072335

55000 6875 833.946069 831.181751 831.19008

56000 7000 832.460427 829.711206 829.718645

57000 7125 833.832694 831.138027 831.150329

58000 7250 834.314072 831.650687 831.656542

59000 7375 833.149534 830.490382 830.496895

60000 7500 836.641063 834.076 834.094333

61000 7625 837.621256 835.092997 835.109198

62000 7750 836.521165 833.928026 833.940984

63000 7875 840.221617 837.783454 837.786484

64000 8000 838.402118 835.960335 835.976093

65000 8125 839.971499 837.534537 837.529756

66000 8250 841.124247 838.722834 838.742341

67000 8375 841.6565 839.304061 839.310696

184

B: Data Tables Broadcast Policy Throughput

Total Messages
Payload

Size
(kiB)

Input Rate
(bytes/sec)

Output A Rate
(bytes/sec)

Output B Rate
(bytes/sec)

Delta Rate
Input / Output

(bytes/sec)

68000 8500 841.393054 838.957357 838.960888

69000 8625 842.506952 840.250149 840.261364

70000 8750 846.4707 844.073967 844.080014

71000 8875 843.948783 841.743965 841.743486

72000 9000 843.926793 841.697489 841.690916

73000 9125 846.436214 844.12986 844.147124

74000 9250 844.282624 839.25538 839.259621

75000 9375 846.505371 844.119796 844.129786

76000 9500 847.011548 844.926816 844.928611

77000 9625 846.648857 842.857863 842.863189

78000 9750 847.71148 845.67537 845.689738

79000 9875 846.58075 844.516914 844.572633

80000 10000 845.986525 843.96287 843.971044

81000 10125 845.766157 843.775926 843.779152

82000 10250 845.880265 843.978984 843.983292

83000 10375 846.122802 844.154199 844.160561

84000 10500 847.870887 845.999377 846.006143

85000 10625 850.18767 848.334193 848.32184

86000 10750 851.660253 849.822619 849.826113

87000 10875 851.036532 849.120151 849.167877

88000 11000 849.560272 847.759831 847.771397

89000 11125 850.787835 848.921539 848.925677

90000 11250 851.557733 849.482513 849.490759

91000 11375 808.860388 789.336934 789.349798

92000 11500 826.785841 816.218332 816.253129

93000 11625 844.575941 840.758985 840.767116

94000 11750 860.879351 858.955087 858.964108

95000 11875 838.025563 832.419269 832.426759

96000 12000 849.247802 844.85976 844.865944

97000 12125 835.553112 829.742915 829.746682

98000 12250 822.236538 814.017729 814.01976

99000 12375 839.918549 834.822514 834.829301

100000 12500 828.725983 819.504766 819.507695

101000 12625 834.679861 825.856921 825.86494

185

B: Data Tables Broadcast Policy Throughput

Total Messages
Payload

Size
(kiB)

Input Rate
(bytes/sec)

Output A Rate
(bytes/sec)

Output B Rate
(bytes/sec)

Delta Rate
Input / Output

(bytes/sec)

102000 12750 832.684377 822.039951 822.045444

103000 12875 851.30211 847.386785 847.394427

104000 13000 853.933304 850.782522 850.790326

105000 13125 831.966122 823.806903 823.809437

106000 13250 831.44044 821.574307 821.576997

107000 13375 836.929156 831.461408 831.470336

108000 13500 860.299124 858.73307 858.740705

109000 13625 862.715129 861.207379 861.21581

110000 13750 863.485698 861.974947 861.979588

111000 13875 860.808419 859.339791 859.345653

112000 14000 862.594071 861.123788 861.130052

113000 14125 861.463687 860.058748 860.067946

114000 14250 863.627682 862.142138 862.182397

115000 14375 859.409827 857.723304 857.73092

116000 14500 815.549899 799.210436 799.244664

117000 14625 828.267516 819.699443 819.697763

118000 14750 854.317841 851.519491 851.517755

186

B: Data Tables RoundRobin Policy Throughput

B.4 RoundRobin Policy Throughput

Total Messages
Payload

Size
(kiB)

Input Rate
(bytes/sec)

Output A Rate
(bytes/sec)

Output B Rate
(bytes/sec)

Delta Rate
Input / Output

(bytes/sec)

1000 125 245.959682 115.49566 115.271805 15.192217

2000 250 483.975452 225.119908 225.095841 33.759703

3000 375 706.946765 330.694255 330.893226 45.359284

4000 500 925.602179 431.859617 432.422002 61.32056

5000 625 1121.73972 530.010942 530.057371 61.671407

6000 750 1327.3608 625.673961 625.785885 75.900954

7000 875 1528.43901 714.76369 714.845177 98.830143

8000 1000 1717.008276 784.931738 784.802502 147.274036

9000 1125 1896.617888 894.605529 894.75359 107.258769

10000 1250 2093.970705 966.555601 966.521734 160.89337

11000 1375 2228.154966 1052.897816 1053.015719 122.241431

12000 1500 2398.183616 1137.725721 1138.023498 122.434397

13000 1625 2530.591937 1199.568732 1199.555069 131.468136

14000 1750 2704.231272 1275.288854 1275.456952 153.485466

15000 1875 2835.186632 1350.283734 1350.234954 134.667944

16000 2000 2990.326667 1417.825095 1418.01189 154.489682

17000 2125 3097.797466 1472.829571 1472.889753 152.078142

18000 2250 3238.233608 1509.825369 1509.885841 218.522398

19000 2375 3410.723242 1619.777663 1620.170647 170.774932

20000 2500 3500.121717 1673.046394 1673.242271 153.833052

21000 2625 3627.407238 1735.219296 1735.366744 156.821198

22000 2750 3738.728795 1779.030671 1779.597584 180.10054

23000 2875 3829.203537 1822.000871 1822.285815 184.916851

24000 3000 3969.099896 1895.407753 1895.589286 178.102857

25000 3125 4047.62271 1927.038977 1927.348656 193.235077

26000 3250 4176.439133 1970.585991 1970.945181 234.907961

27000 3375 4301.003328 2054.869601 2055.013833 191.119894

28000 3500 4350.946067 2087.176415 2087.425154 176.344498

29000 3625 4557.236215 2160.96618 2161.293017 234.977018

30000 3750 4598.552498 2188.677625 2188.897005 220.977868

31000 3875 4647.510329 2233.326445 2233.91146 180.272424

32000 4000 4719.221093 2256.542392 2256.941822 205.736879

33000 4125 4822.876922 2318.246975 2318.507644 186.122303

187

B: Data Tables RoundRobin Policy Throughput

Total Messages
Payload

Size
(kiB)

Input Rate
(bytes/sec)

Output A Rate
(bytes/sec)

Output B Rate
(bytes/sec)

Delta Rate
Input / Output

(bytes/sec)

34000 4250 4916.091713 2366.851379 2367.332758 181.907576

35000 4375 5056.513034 2411.117703 2411.169 234.226331

36000 4500 5124.180238 2444.469435 2444.727732 234.983071

37000 4625 5254.207058 2522.582616 2522.709374 208.915068

38000 4750 5163.550713 2488.687427 2489.26773 185.595556

39000 4875 5366.6266 2563.146569 2563.34253 240.137501

40000 5000 5362.090583 2561.581867 2562.10074 238.407976

41000 5125 5457.820631 2628.769336 2628.992582 200.058713

42000 5250 5512.943999 2644.795297 2644.809261 223.339441

43000 5375 5629.895636 2711.541999 2711.819039 206.534598

44000 5500 5678.591709 2732.572193 2733.022248 212.997268

45000 5625 5688.518711 2701.495343 2701.478536 285.544832

46000 5750 5668.874858 2735.718719 2736.052187 197.103952

47000 5875 5843.543475 2811.338963 2811.840395 220.364117

48000 6000 5878.557813 2836.998884 2837.465043 204.093886

49000 6125 5853.435704 2821.295498 2821.35263 210.787576

50000 6250 6081.740292 2914.743489 2916.814 250.182803

51000 6375 6029.889809 2890.29519 2890.641186 248.953433

52000 6500 6167.700488 2977.356592 2977.728658 212.615238

53000 6625 6260.699299 3020.817724 3021.234936 218.646639

54000 6750 6305.28509 3043.679311 3044.065245 217.540534

55000 6875 6285.168374 3043.950539 3044.090968 197.126867

56000 7000 6345.458787 3061.1986 3061.531199 222.728988

57000 7125 6546.293724 3140.466644 3140.915488 264.911592

58000 7250 6491.900235 3131.983057 3132.36602 227.551158

59000 7375 6534.090343 3161.471949 3162.078567 210.539827

60000 7500 6594.080494 3194.123426 3194.603599 205.353469

61000 7625 6693.615969 3224.601024 3224.870185 244.14476

62000 7750 6622.084374 3181.249374 3181.451885 259.383115

63000 7875 6725.969791 3268.382914 3268.77849 188.808387

64000 8000 6774.89921 3278.189744 3278.601404 218.108062

65000 8125 6826.548637 3294.490985 3294.558599 237.499053

66000 8250 6886.014754 3321.867369 3322.381373 241.766012

67000 8375 6838.609031 3321.986455 3322.831352 193.791224

188

B: Data Tables RoundRobin Policy Throughput

Total Messages
Payload

Size
(kiB)

Input Rate
(bytes/sec)

Output A Rate
(bytes/sec)

Output B Rate
(bytes/sec)

Delta Rate
Input / Output

(bytes/sec)

68000 8500 6997.678829 3397.055998 3397.494794 203.128037

69000 8625 6990.329032 3394.683325 3395.026232 200.619475

70000 8750 6859.756396 3332.863108 3332.995615 193.897673

71000 8875 7135.378634 3464.61647 3464.76033 206.001834

72000 9000 7001.864052 3388.62565 3389.033986 224.204416

73000 9125 7176.097501 3497.260339 3497.477023 181.360139

74000 9250 7073.522962 3444.162791 3444.370345 184.989826

75000 9375 7100.814236 3445.47898 3445.896908 209.438348

76000 9500 7228.237987 3522.782696 3523.170286 182.285005

77000 9625 7262.871034 3538.166262 3538.411608 186.293164

78000 9750 7307.921131 3545.124421 3545.355006 217.441704

79000 9875 7229.050828 3523.318393 3523.661973 182.070462

80000 10000 7330.617156 3551.234733 3551.882337 227.500086

81000 10125 7286.84232 3546.189345 3546.520942 194.132033

82000 10250 7295.035524 3558.011487 3558.404232 178.619805

83000 10375 7516.827732 3645.556796 3645.91608 225.354856

84000 10500 7632.506445 3709.649262 3709.906634 212.950549

85000 10625 7461.986883 3613.203597 3613.517048 235.266238

86000 10750 7702.097209 3750.540389 3750.755535 200.801285

87000 10875 7580.866937 3694.292808 3694.46865 192.105479

88000 11000 7553.457449 3691.583068 3691.769417 170.104964

89000 11125 7526.924188 3665.755734 3666.061541 195.106913

90000 11250 7655.84428 3738.777555 3739.051359 178.015366

91000 11375 7636.644109 3716.994247 3717.258567 202.391295

92000 11500 7919.279814 3844.370176 3844.63825 230.271388

93000 11625 7874.280424 3841.699172 3841.759117 190.822135

94000 11750 7827.79582 3802.844922 3803.273959 221.676939

95000 11875 7885.966599 3854.582464 3854.777774 176.606361

96000 12000 7902.835949 3827.329942 3827.569603 247.936404

97000 12125 7807.157731 3795.809969 3795.974353 215.373409

98000 12250 7878.95798 3840.163705 3840.277459 198.516816

99000 12375 7814.692949 3800.132304 3800.515955 214.04469

100000 12500 7980.477836 3894.425218 3894.737334 191.315284

101000 12625 8149.846137 3957.542168 3957.780533 234.523436

189

B: Data Tables RoundRobin Policy Throughput

Total Messages
Payload

Size
(kiB)

Input Rate
(bytes/sec)

Output A Rate
(bytes/sec)

Output B Rate
(bytes/sec)

Delta Rate
Input / Output

(bytes/sec)

102000 12750 8009.171915 3910.295152 3910.562486 188.314277

103000 12875 8089.924776 3951.349134 3951.625227 186.950415

104000 13000 8090.922677 3957.235329 3957.692413 175.994935

105000 13125 7988.76217 3908.188137 3908.470457 172.103576

106000 13250 8151.410763 3969.845225 3970.095026 211.470512

107000 13375 8234.758021 4022.792183 4023.233838 188.732

108000 13500 8130.297962 3976.724977 3976.683924 176.889061

109000 13625 8206.0517 4007.510003 4007.748761 190.792936

110000 13750 8105.502398 3958.619671 3959.060237 187.82249

111000 13875 8107.096646 3964.320827 3964.714817 178.061002

112000 14000 8190.760471 4006.837511 4006.925051 176.997909

113000 14125 8222.493395 4028.041276 4028.294558 166.157561

114000 14250 8240.946778 4022.410005 4022.650648 195.886125

115000 14375 8309.227542 4072.468281 4072.785585 163.973676

116000 14500 8260.427936 4038.304578 4038.468227 183.655131

117000 14625 8416.182377 4100.612774 4102.427997 213.141606

118000 14750 8429.241553 4121.4346 4121.57784 186.229113

119000 14875 8218.666816 4007.226452 4007.678803 203.761561

120000 15000 8452.090487 4139.376622 4139.841745 172.87212

121000 15125 8386.130145 4113.039101 4113.3551 159.735944

122000 15250 8461.643992 4138.883377 4139.177859 183.582756

123000 15375 8354.361306 4102.296472 4102.428161 149.636673

124000 15500 8402.703638 4108.194363 4108.192067 186.317208

125000 15625 8347.456116 4068.95249 4069.37311 209.130516

126000 15750 8503.345121 4169.822485 4170.066832 163.455804

127000 15875 8404.71384 4123.161633 4123.520981 158.031226

128000 16000 8447.937637 4131.247643 4131.0987 185.591294

129000 16125 8525.782495 4153.799397 4154.010186 217.972912

130000 16250 8477.507477 4147.373177 4147.864994 182.269306

131000 16375 8603.40528 4197.968809 4197.802727 207.633744

132000 16500 8658.974174 4234.432692 4234.622917 189.918565

133000 16625 8600.596881 4201.444265 4201.586266 197.56635

134000 16750 8525.594503 4177.452065 4177.660565 170.481873

135000 16875 8672.958352 4250.677599 4250.968304 171.312449

190

B: Data Tables RoundRobin Policy Throughput

Total Messages
Payload

Size
(kiB)

Input Rate
(bytes/sec)

Output A Rate
(bytes/sec)

Output B Rate
(bytes/sec)

Delta Rate
Input / Output

(bytes/sec)

136000 17000 8677.678172 4254.104209 4254.609928 168.964035

137000 17125 8614.405562 4196.484629 4196.730414 221.190519

138000 17250 8763.013074 4306.809347 4307.035627 149.1681

139000 17375 8773.302349 4293.788008 4294.041899 185.472442

140000 17500 8685.830711 4250.890021 4251.107983 183.832707

141000 17625 8905.656507 4362.765122 4363.003313 179.888072

142000 17750 8627.013793 4234.644478 4234.812927 157.556388

143000 17875 8505.337932 4144.262198 4144.359445 216.716289

144000 18000 8745.129221 4288.650454 4288.782686 167.696081

145000 18125 8872.825607 4358.256103 4358.50925 156.060254

146000 18250 8639.94639 4242.276731 4242.591895 155.077764

147000 18375 8851.386308 4329.509991 4329.700134 192.176183

148000 18500 8940.063099 4380.795276 4380.928855 178.338968

149000 18625 8832.407324 4336.139158 4336.310445 159.957721

150000 18750 8781.753063 4309.472448 4311.010204 161.270411

151000 18875 8805.501117 4330.44482 4330.643957 144.41234

152000 19000 8941.570952 4394.781555 4394.910711 151.878686

153000 19125 8969.101971 4401.732485 4402.002549 165.366937

154000 19250 8884.75344 4354.324866 4354.517432 175.911142

155000 19375 8919.171875 4386.650322 4387.066693 145.45486

156000 19500 8854.953478 4348.094547 4348.017425 158.841506

157000 19625 9012.721255 4431.793888 4432.148052 148.779315

158000 19750 9025.089807 4435.838015 4436.14167 153.110122

159000 19875 9046.161881 4435.919759 4436.030994 174.211128

160000 20000 8910.686904 4379.519194 4379.849761 151.317949

161000 20125 8980.886387 4393.723821 4393.834002 193.328564

162000 20250 9029.38966 4419.266556 4419.51124 190.611864

163000 20375 8988.412613 4421.526022 4421.82005 145.066541

164000 20500 9058.137613 4445.637825 4446.015368 166.48442

165000 20625 9062.866634 4460.103451 4460.272446 142.490737

166000 20750 8922.224326 4387.496199 4387.66403 147.064097

167000 20875 9180.962993 4516.563467 4516.69618 147.703346

168000 21000 9105.814442 4479.59921 4479.817397 146.397835

169000 21125 9036.632422 4432.080203 4432.355867 172.196352

191

B: Data Tables RoundRobin Policy Throughput

Total Messages
Payload

Size
(kiB)

Input Rate
(bytes/sec)

Output A Rate
(bytes/sec)

Output B Rate
(bytes/sec)

Delta Rate
Input / Output

(bytes/sec)

170000 21250 9116.952861 4481.707473 4482.038502 153.206886

171000 21375 8999.229855 4422.543064 4422.657549 154.029242

172000 21500 9050.448515 4438.982627 4439.158324 172.307564

173000 21625 9086.292414 4467.443163 4467.641316 151.207935

174000 21750 9182.073553 4512.333062 4512.466621 157.27387

175000 21875 9098.343264 4465.561371 4465.952394 166.829499

176000 22000 9165.776345 4515.189461 4515.34544 135.241444

177000 22125 9170.586747 4510.259382 4510.415452 149.911913

178000 22250 9208.239843 4527.503374 4527.649085 153.087384

179000 22375 9134.447328 4490.682792 4490.924111 152.840425

180000 22500 9154.688604 4513.225176 4513.44903 128.014398

181000 22625 9126.807102 4489.296682 4489.461084 148.049336

182000 22750 9121.928203 4488.300695 4488.499719 145.127789

183000 22875 9171.78896 4519.878892 4520.01161 131.898458

184000 23000 9181.791589 4520.728382 4521.127277 139.93593

185000 23125 9237.93295 4546.709356 4546.789331 144.434263

186000 23250 9261.271677 4559.77963 4560.058673 141.433374

187000 23375 9292.825889 4578.664255 4578.796375 135.365259

188000 23500 9374.928161 4611.45155 4611.634832 151.841779

189000 23625 9336.081138 4586.367091 4586.581212 163.132835

190000 23750 9363.874085 4607.0076 4607.177133 149.689352

191000 23875 9275.481009 4574.244924 4574.445309 126.790776

192000 24000 9321.783449 4595.644665 4595.966798 130.171986

193000 24125 9313.274374 4586.9249 4587.225789 139.123685

194000 24250 9186.794863 4509.29999 4509.411901 168.082972

195000 24375 9424.241663 4650.764124 4651.00873 122.468809

196000 24500 9346.971009 4599.256404 4599.441582 148.273023

197000 24625 9144.05262 4501.86286 4502.072915 140.116845

198000 24750 9378.251305 4622.898207 4623.176131 132.176967

199000 24875 9302.97006 4583.322072 4583.681875 135.966113

200000 25000 9246.151555 4554.644082 4555.040064 136.467409

201000 25125 9473.535819 4654.427678 4654.752837 164.355304

202000 25250 9391.021542 4627.139684 4627.367319 136.514539

203000 25375 9437.723231 4658.093656 4658.455783 121.173792

192

B: Data Tables RoundRobin Policy Throughput

Total Messages
Payload

Size
(kiB)

Input Rate
(bytes/sec)

Output A Rate
(bytes/sec)

Output B Rate
(bytes/sec)

Delta Rate
Input / Output

(bytes/sec)

204000 25500 9559.16863 4701.737194 4701.949637 155.481799

205000 25625 9413.106148 4634.282132 4634.444188 144.379828

206000 25750 9532.417786 4695.641901 4696.90365 139.872235

207000 25875 9445.88607 4653.132648 4653.452882 139.30054

208000 26000 9493.783261 4676.715432 4676.974247 140.093582

209000 26125 9552.638949 4707.687293 4707.856454 137.095202

210000 26250 9330.79204 4606.312018 4606.400219 118.079803

211000 26375 9436.231668 4658.591121 4658.806575 118.833972

212000 26500 9424.376844 4634.010586 4634.175283 156.190975

213000 26625 9403.101284 4622.018417 4622.253681 158.829186

214000 26750 9584.290792 4724.082346 4724.297671 135.910775

215000 26875 9518.69831 4682.049906 4682.173607 154.474797

216000 27000 9456.245732 4654.743217 4655.024911 146.477604

217000 27125 9571.710083 4724.073686 4724.109981 123.526416

218000 27250 9630.530017 4745.74167 4746.015583 138.772764

219000 27375 9522.306329 4691.745948 4691.965273 138.595108

220000 27500 9403.502899 4628.133602 4628.328868 147.040429

221000 27625 9400.907796 4642.621476 4642.802281 115.484039

222000 27750 9575.036173 4714.771704 4714.958132 145.306337

223000 27875 9723.476536 4797.44917 4797.664807 128.362559

224000 28000 9699.119878 4784.419036 4784.4493 130.251542

225000 28125 9712.21708 4790.410483 4790.589162 131.217435

226000 28250 9652.793296 4759.56704 4759.805594 133.420662

227000 28375 9606.668297 4743.797963 4744.00504 118.865294

228000 28500 9635.328592 4757.115184 4757.275232 120.938176

229000 28625 9600.515024 4725.011659 4724.903847 150.599518

230000 28750 9514.294048 4690.760802 4691.000328 132.532918

231000 28875 9732.283831 4792.500325 4792.660099 147.123407

232000 29000 9710.082062 4789.272625 4789.590872 131.218565

233000 29125 9622.297564 4738.019678 4738.249537 146.028349

234000 29250 9829.86974 4849.595875 4849.78677 130.487095

235000 29375 9716.538392 4802.821392 4803.041235 110.675765

236000 29500 9697.577352 4783.292467 4783.58276 130.702125

237000 29625 9898.816553 4880.650331 4880.830305 137.335917

193

B: Data Tables RoundRobin Policy Throughput

Total Messages
Payload

Size
(kiB)

Input Rate
(bytes/sec)

Output A Rate
(bytes/sec)

Output B Rate
(bytes/sec)

Delta Rate
Input / Output

(bytes/sec)

238000 29750 9593.271489 4720.28202 4720.348446 152.641023

239000 29875 9855.24013 4869.245898 4869.346809 116.647423

240000 30000 9788.127417 4831.040557 4831.179802 125.907058

194

B: Data Tables Anycast Policy Throughput

B
.5

A
ny

ca
st

Po
lic

y
Th

ro
ug

hp
ut

To
ta

l
M

es
sa

ge
s

P
ay

lo
ad

S
iz

e
(k

iB
)

In
pu

tR
at

e
(b

yt
es

/s
ec

)
O

ut
pu

tA
R

at
e

(b
yt

es
/s

ec
)

O
ut

pu
tB

R
at

e
(b

yt
es

/s
ec

)
S

td
.D

ev
ia

tio
n

(b
yt

es
/s

ec
)

D
el

ta
R

at
e

In
pu

t/
O

ut
pu

t
(b

yt
es

/s
ec

)

10
00

12
5

94
0.

58
42

34
24

3.
01

52
46

25
5.

57
12

6
24

1.
03

66
9

24
6.

54
10

65
3

20
00

25
0

17
79

.3
32

51
9

47
3.

03
51

57
50

8.
69

41
8

48
9.

08
00

36
49

0.
26

97
91

30
00

37
5

25
49

.8
23

55
2

66
3.

96
38

22
70

1.
69

15
35

70
2.

40
73

16
68

9.
35

42
24

3

40
00

50
0

32
17

.6
99

92
4

87
9.

94
94

65
89

2.
42

67
58

90
4.

19
06

22
89

2.
18

89
48

3

50
00

62
5

38
68

.0
52

97
7

10
57

.9
99

09
10

80
.8

53
04

9
10

46
.3

94
86

10
61

.7
49

60
00

75
0

43
87

.3
08

68
6

11
92

.9
83

59
12

41
.7

79
27

8
12

08
.6

08
88

12
14

.4
57

24
9

70
00

87
5

48
73

.9
66

19
7

13
50

.6
53

15
13

99
.0

71
38

13
67

.3
60

42
7

13
72

.3
61

65
2

80
00

10
00

54
22

.6
51

63
6

15
20

.6
57

28
6

15
59

.1
98

60
2

15
27

.1
70

89
1

15
35

.6
75

59
3

90
00

11
25

57
14

.6
95

72
1

15
80

.3
68

07
7

16
04

.9
82

34
8

15
91

.8
18

80
7

15
92

.3
89

74
4

10
00

0
12

50
59

92
.1

32
33

16
95

.3
22

09
6

17
16

.0
66

37
3

16
89

.3
52

55
5

17
00

.2
47

00
8

11
00

0
13

75
65

11
.2

68
34

2
18

72
.1

90
11

4
18

79
.9

79
83

1
18

81
.8

77
79

4
18

78
.0

15
91

3

12
00

0
15

00
68

55
.4

70
12

2
19

68
.0

69
87

5
19

54
.4

20
47

9
19

44
.1

77
05

5
19

55
.5

55
80

3

13
00

0
16

25
71

73
.2

84
48

1
20

06
.7

93
01

5
20

12
.7

79
01

3
19

99
.7

20
48

9
20

06
.4

30
83

9

14
00

0
17

50
74

05
.3

81
70

2
21

38
.8

99
21

21
68

.5
99

36
5

21
51

.1
95

26
21

52
.8

97
94

5

15
00

0
18

75
76

24
.7

83
39

3
22

06
.7

09
31

1
22

39
.7

70
86

22
31

.6
81

79
9

22
26

.0
53

99

16
00

0
20

00
77

99
.3

72
83

3
22

72
.6

70
79

1
22

91
.0

81
89

22
87

.5
03

37
1

22
83

.7
52

01
7

17
00

0
21

25
78

63
.2

86
13

2
23

18
.8

14
97

3
23

31
.7

23
24

5
23

27
.2

86
24

4
23

25
.9

41
48

7

18
00

0
22

50
84

12
.0

12
91

5
24

95
.7

14
07

3
25

03
.9

04
66

6
24

91
.8

06
56

24
97

.1
41

76
6

195

B: Data Tables Anycast Policy Throughput

To
ta

l
M

es
sa

ge
s

P
ay

lo
ad

S
iz

e
(k

iB
)

In
pu

tR
at

e
(b

yt
es

/s
ec

)
O

ut
pu

tA
R

at
e

(b
yt

es
/s

ec
)

O
ut

pu
tB

R
at

e
(b

yt
es

/s
ec

)
S

td
.D

ev
ia

tio
n

(b
yt

es
/s

ec
)

D
el

ta
R

at
e

In
pu

t/
O

ut
pu

t
(b

yt
es

/s
ec

)

19
00

0
23

75
82

93
.6

90
94

6
24

64
.5

41
18

4
24

65
.2

94
28

7
24

71
.8

15
63

1
24

67
.2

17
03

4

20
00

0
25

00
85

19
.0

01
42

25
55

.6
65

87
4

25
37

.7
56

48
9

25
56

.5
03

10
7

25
49

.9
75

15
7

21
00

0
26

25
85

87
.7

90
94

2
25

35
.1

48
1

25
21

.2
34

40
4

25
41

.9
20

66
5

25
32

.7
67

72
3

22
00

0
27

50
92

80
.5

93
68

8
26

91
.6

16
62

2
26

84
.7

36
75

1
27

02
.0

22
97

5
26

92
.7

92
11

6

23
00

0
28

75
93

18
.7

84
68

5
27

48
.2

66
64

27
45

.3
63

96
4

27
74

.9
98

96
27

56
.2

09
85

5

24
00

0
30

00
91

57
.2

12
16

3
27

78
.9

11
13

7
27

63
.3

49
00

2
27

94
.5

88
85

3
27

78
.9

49
66

4

25
00

0
31

25
95

08
.4

65
57

7
28

07
.4

07
58

5
28

04
.6

00
45

28
18

.0
64

39
8

28
10

.0
24

14
4

26
00

0
32

50
94

98
.2

78
98

5
28

64
.6

95
11

28
70

.5
43

43
1

28
74

.1
34

08
7

28
69

.7
90

87
6

27
00

0
33

75
97

01
.2

48
26

3
29

27
.0

26
58

4
29

17
.6

74
93

7
29

23
.6

13
57

5
29

22
.7

71
69

9

28
00

0
35

00
96

09
.8

40
47

7
29

06
.1

22
13

3
29

16
.2

78
25

1
29

05
.3

50
10

8
29

09
.2

50
16

4

29
00

0
36

25
98

47
.9

61
06

5
30

11
.1

30
38

9
30

24
.6

59
72

2
30

11
.8

71
90

2
30

15
.8

87
33

8

30
00

0
37

50
98

92
.8

04
86

4
30

24
.6

26
36

6
30

35
.9

32
49

5
30

34
.0

53
62

30
31

.5
37

49
4

31
00

0
38

75
10

20
7.

56
92

8
30

92
.6

01
90

2
30

83
.3

02
49

8
31

00
.8

26
76

7
30

92
.2

43
72

2

32
00

0
40

00
10

46
2.

88
11

3
31

63
.2

79
70

4
31

63
.2

64
24

31
71

.5
83

37
7

31
66

.0
42

44

33
00

0
41

25
99

87
.1

92
18

3
30

65
.4

08
14

3
30

63
.3

93
56

6
30

72
.7

00
24

4
30

67
.1

67
31

8

34
00

0
42

50
96

23
.4

15
92

2
29

28
.3

66
62

7
29

27
.7

19
34

3
29

38
.1

53
54

7
29

31
.4

13
17

2

35
00

0
43

75
10

24
4.

46
21

4
31

55
.9

17
48

8
31

54
.2

28
56

6
31

71
.0

17
16

4
31

60
.3

87
73

9

36
00

0
45

00
10

39
9.

07
61

31
58

.6
16

86
4

31
62

.0
05

81
4

31
78

.9
38

49
7

31
66

.5
20

39
2

37
00

0
46

25
10

53
1.

09
74

8
31

87
.2

82
69

3
31

92
.5

04
42

8
32

12
.4

17
60

2
31

97
.4

01
57

4

196

B: Data Tables Anycast Policy Throughput

To
ta

l
M

es
sa

ge
s

P
ay

lo
ad

S
iz

e
(k

iB
)

In
pu

tR
at

e
(b

yt
es

/s
ec

)
O

ut
pu

tA
R

at
e

(b
yt

es
/s

ec
)

O
ut

pu
tB

R
at

e
(b

yt
es

/s
ec

)
S

td
.D

ev
ia

tio
n

(b
yt

es
/s

ec
)

D
el

ta
R

at
e

In
pu

t/
O

ut
pu

t
(b

yt
es

/s
ec

)

38
00

0
47

50
10

26
6.

66
30

6
31

64
.8

27
21

6
31

67
.3

41
23

7
31

87
.4

17
43

31
73

.1
95

29
4

39
00

0
48

75
10

34
7.

71
50

7
31

78
.2

59
63

5
31

74
.9

53
55

3
31

85
.7

12
69

8
31

79
.6

41
96

2

40
00

0
50

00
10

61
5.

28
30

4
33

04
.8

44
04

2
33

04
.1

83
60

6
33

11
.1

13
95

33
06

.7
13

86
6

41
00

0
51

25
10

45
6.

34
28

6
31

99
.4

84
40

5
31

95
.7

75
43

1
31

97
.0

56
65

3
31

97
.4

38
83

42
00

0
52

50
10

66
1.

45
16

9
32

98
.5

80
99

33
04

.9
37

87
4

32
97

.1
11

36
9

33
00

.2
10

07
8

43
00

0
53

75
10

42
3.

81
78

9
32

56
.7

80
40

7
32

62
.6

63
90

7
32

57
.1

97
70

3
32

58
.8

80
67

2

44
00

0
55

00
96

63
.5

39
70

6
30

19
.3

21
42

30
24

.6
67

55
30

15
.9

27
92

8
30

19
.9

72
29

9

45
00

0
56

25
10

25
3.

57
08

1
31

94
.4

21
81

9
32

01
.1

03
25

5
31

88
.2

78
01

3
31

94
.6

01
02

9

46
00

0
57

50
80

00
.1

85
04

8
23

79
.7

94
17

4
23

85
.0

40
91

2
23

80
.2

11
66

8
23

81
.6

82
25

1

47
00

0
58

75
11

18
1.

63
73

7
34

63
.3

58
21

9
34

73
.3

68
84

4
34

61
.1

70
81

4
34

65
.9

65
95

9

48
00

0
60

00
10

85
5.

82
09

34
02

.6
43

28
4

34
04

.3
54

41
5

33
92

.6
32

73
3

33
99

.8
76

81
1

49
00

0
61

25
11

36
9.

74
83

9
35

15
.9

05
00

2
35

19
.7

92
20

2
35

03
.4

43
39

2
35

13
.0

46
86

5

50
00

0
62

50
11

47
2.

58
15

6
35

98
.5

82
88

36
02

.9
09

66
1

35
75

.0
18

39
1

35
92

.1
70

31
1

51
00

0
63

75
11

22
0.

95
42

3
34

99
.6

93
48

3
35

09
.9

17
76

34
84

.4
98

75
5

34
98

.0
36

66
6

52
00

0
65

00
11

26
9.

55
43

35
64

.2
57

66
9

35
73

.7
06

06
7

35
43

.5
07

20
6

35
60

.4
90

31
4

53
00

0
66

25
11

33
5.

46
29

8
35

82
.4

90
40

3
35

86
.8

18
89

7
35

53
.6

73
38

3
35

74
.3

27
56

1

54
00

0
67

50
11

19
2.

87
43

7
35

33
.2

11
77

9
35

31
.8

03
49

3
35

09
.8

04
26

8
35

24
.9

39
84

7

55
00

0
68

75
11

41
9.

65
63

9
36

24
.6

72
00

3
36

23
.0

36
80

6
35

98
.5

65
86

4
36

15
.4

24
89

1

56
00

0
70

00
11

39
2.

20
70

4
35

94
.3

38
34

5
35

91
.9

05
35

7
35

72
.3

07
81

35
86

.1
83

83
7

197

B: Data Tables Anycast Policy Throughput

To
ta

l
M

es
sa

ge
s

P
ay

lo
ad

S
iz

e
(k

iB
)

In
pu

tR
at

e
(b

yt
es

/s
ec

)
O

ut
pu

tA
R

at
e

(b
yt

es
/s

ec
)

O
ut

pu
tB

R
at

e
(b

yt
es

/s
ec

)
S

td
.D

ev
ia

tio
n

(b
yt

es
/s

ec
)

D
el

ta
R

at
e

In
pu

t/
O

ut
pu

t
(b

yt
es

/s
ec

)

57
00

0
71

25
11

59
9.

06
07

6
36

55
.6

07
01

2
36

55
.8

60
29

6
36

33
.4

98
28

6
36

48
.3

21
86

5

58
00

0
72

50
11

24
1.

18
36

7
35

60
.4

26
08

8
35

66
.0

52
14

1
35

37
.1

70
02

1
35

54
.5

49
41

7

59
00

0
73

75
11

55
4.

95
86

2
36

66
.3

59
59

7
36

78
.5

19
75

8
36

49
.9

10
53

7
36

64
.9

29
96

4

60
00

0
75

00
11

29
8.

85
41

3
35

94
.3

22
39

4
35

96
.4

77
19

9
35

74
.4

51
87

1
35

88
.4

17
15

5

61
00

0
76

25
11

53
7.

06
85

1
36

42
.3

46
48

5
36

49
.0

52
25

2
36

20
.7

18
20

8
36

37
.3

72
31

5

62
00

0
77

50
11

53
0.

71
12

1
36

65
.6

31
44

8
36

74
.8

87
85

3
36

38
.6

81
51

4
36

59
.7

33
60

5

63
00

0
78

75
11

59
3.

04
22

6
36

85
.1

69
22

1
36

97
.2

69
45

2
36

63
.5

46
44

36
81

.9
95

03
8

64
00

0
80

00
11

53
9.

74
86

6
36

66
.0

38
85

6
36

73
.9

99
14

6
36

40
.2

97
13

4
36

60
.1

11
71

2

65
00

0
81

25
11

52
2.

19
75

1
36

15
.9

56
72

5
36

24
.7

66
25

6
35

96
.9

29
93

3
36

12
.5

50
97

1

66
00

0
82

50
11

48
9.

16
25

9
36

64
.3

13
83

5
36

77
.9

95
47

8
36

52
.4

05
35

5
36

64
.9

04
88

9

67
00

0
83

75
11

76
0.

19
38

5
37

39
.7

43
47

3
37

46
.5

23
97

5
37

22
.2

85
83

7
37

36
.1

84
42

8

68
00

0
85

00
11

93
2.

57
74

3
38

06
.2

11
23

38
09

.7
14

17
5

37
86

.5
99

68
1

38
00

.8
41

69
5

69
00

0
86

25
12

17
4.

09
37

8
38

55
.6

96
87

8
38

58
.5

24
56

5
38

38
.6

94
67

9
38

50
.9

72
04

1

70
00

0
87

50
12

43
1.

70
33

3
39

20
.6

16
39

4
39

34
.5

23
78

2
39

11
.1

03
02

4
39

22
.0

81
06

7

71
00

0
88

75
11

89
0.

63
03

2
37

63
.4

03
27

2
37

78
.4

45
04

2
37

50
.3

56
61

4
37

64
.0

68
30

9

72
00

0
90

00
11

77
4.

01
73

6
37

42
.7

55
93

7
37

54
.0

29
37

2
37

24
.7

13
38

5
37

40
.4

99
56

5

73
00

0
91

25
11

97
4.

73
36

4
38

07
.1

19
71

5
38

20
.0

28
90

4
37

88
.2

06
87

6
38

05
.1

18
49

8

74
00

0
92

50
11

87
5.

30
1

37
90

.4
22

15
5

38
09

.2
52

46
6

37
72

.3
93

03
6

37
90

.6
89

21
9

75
00

0
93

75
11

79
4.

23
68

37
78

.1
79

04
5

37
86

.9
35

50
3

37
55

.3
30

02
5

37
73

.4
81

52
4

198

B: Data Tables Anycast Policy Throughput

To
ta

l
M

es
sa

ge
s

P
ay

lo
ad

S
iz

e
(k

iB
)

In
pu

tR
at

e
(b

yt
es

/s
ec

)
O

ut
pu

tA
R

at
e

(b
yt

es
/s

ec
)

O
ut

pu
tB

R
at

e
(b

yt
es

/s
ec

)
S

td
.D

ev
ia

tio
n

(b
yt

es
/s

ec
)

D
el

ta
R

at
e

In
pu

t/
O

ut
pu

t
(b

yt
es

/s
ec

)

76
00

0
95

00
11

86
1.

53
71

6
37

99
.7

39
05

7
38

05
.1

51
29

9
37

77
.7

34
34

6
37

94
.2

08
23

4

77
00

0
96

25
11

81
9.

18
42

9
37

42
.7

72
58

5
37

54
.6

62
25

6
37

28
.1

46
15

1
37

41
.8

60
33

1

78
00

0
97

50
11

91
3.

03
84

9
38

05
.4

98
25

4
38

15
.6

98
04

7
37

89
.4

17
21

6
38

03
.5

37
83

9

79
00

0
98

75
11

82
7.

15
82

1
37

62
.0

11
53

7
37

70
.4

62
44

1
37

45
.1

90
81

37
59

.2
21

59
6

80
00

0
10

00
0

12
01

0.
69

55
2

38
41

.9
74

03
2

38
54

.4
38

64
9

38
30

.1
79

43
9

38
42

.1
97

37
3

81
00

0
10

12
5

12
47

7.
18

67
7

39
67

.6
73

81
9

39
87

.3
91

17
1

39
61

.2
58

71
6

39
72

.1
07

90
2

82
00

0
10

25
0

12
54

7.
73

87
9

39
94

.8
04

76
40

16
.8

23
46

4
39

94
.6

65
95

7
40

02
.0

98
06

83
00

0
10

37
5

11
96

6.
17

86
8

38
03

.8
88

82
7

38
20

.1
42

96
6

38
03

.3
52

33
2

38
09

.1
28

04
2

84
00

0
10

50
0

11
73

7.
06

95
2

37
49

.2
53

59
7

37
70

.3
57

34
2

37
52

.8
51

17
1

37
57

.4
87

37

85
00

0
10

62
5

12
08

3.
47

54
9

38
45

.5
43

68
9

38
66

.2
59

37
6

38
53

.5
51

67
4

38
55

.1
18

24
6

86
00

0
10

75
0

11
77

0.
53

15
7

37
63

.2
18

52
3

37
84

.8
65

05
2

37
76

.0
10

70
8

37
74

.6
98

09
4

87
00

0
10

87
5

11
85

8.
09

21
7

37
96

.3
58

85
38

21
.4

69
51

9
38

07
.8

93
96

8
38

08
.5

74
11

2

88
00

0
11

00
0

12
18

3.
20

55
1

39
06

.3
06

46
6

39
37

.2
25

53
6

39
21

.9
62

92
5

39
21

.8
31

64
2

89
00

0
11

12
5

12
13

8.
63

35
6

38
51

.1
98

94
7

38
76

.3
16

82
3

38
65

.1
39

23
8

38
64

.2
18

33
6

90
00

0
11

25
0

12
25

7.
59

08
2

39
07

.0
35

88
3

39
32

.1
38

42
9

39
18

.0
72

71
2

39
19

.0
82

34
1

91
00

0
11

37
5

12
41

3.
01

68
1

39
71

.7
87

12
4

39
99

.5
21

41
6

39
86

.4
83

71
1

39
85

.9
30

75

92
00

0
11

50
0

12
29

6.
45

19
5

39
23

.1
18

20
6

39
50

.3
46

44
4

39
37

.1
49

23
5

39
36

.8
71

29
5

93
00

0
11

62
5

12
17

8.
12

27
2

38
86

.8
14

33
3

39
16

.8
12

53
8

39
01

.9
84

01
7

39
01

.8
70

29
6

94
00

0
11

75
0

12
50

6.
67

07
8

39
76

.8
73

10
6

40
09

.7
86

35
5

39
95

.0
41

46
6

39
93

.9
00

30
9

199

B: Data Tables Anycast Policy Throughput

To
ta

l
M

es
sa

ge
s

P
ay

lo
ad

S
iz

e
(k

iB
)

In
pu

tR
at

e
(b

yt
es

/s
ec

)
O

ut
pu

tA
R

at
e

(b
yt

es
/s

ec
)

O
ut

pu
tB

R
at

e
(b

yt
es

/s
ec

)
S

td
.D

ev
ia

tio
n

(b
yt

es
/s

ec
)

D
el

ta
R

at
e

In
pu

t/
O

ut
pu

t
(b

yt
es

/s
ec

)

95
00

0
11

87
5

12
39

5.
23

90
3

39
49

.3
44

03
4

39
80

.7
78

05
6

39
65

.9
59

24
7

39
65

.3
60

44
6

96
00

0
12

00
0

12
21

8.
45

99
6

39
04

.0
80

41
7

39
31

.0
17

21
39

14
.7

28
68

2
39

16
.6

08
77

97
00

0
12

12
5

12
47

2.
96

45
3

39
98

.4
65

46
4

40
21

.4
54

05
40

10
.2

67
27

8
40

10
.0

62
26

4

98
00

0
12

25
0

12
48

9.
37

60
7

39
88

.3
92

49
9

40
11

.4
13

25
1

40
01

.8
66

26
2

40
00

.5
57

33
7

99
00

0
12

37
5

12
52

2.
67

52
1

40
11

.9
33

09
2

40
35

.3
22

35
3

40
23

.2
69

11
8

40
23

.5
08

18
8

10
00

00
12

50
0

12
17

7.
35

93
4

39
15

.2
83

70
2

39
43

.0
17

64
4

39
22

.4
19

48
4

39
26

.9
06

94
3

10
10

00
12

62
5

12
29

0.
15

77
3

39
11

.5
39

99
1

39
39

.7
23

59
8

39
21

.4
99

79
1

39
24

.2
54

46

10
20

00
12

75
0

12
21

2.
52

96
2

39
20

.8
91

07
5

39
44

.8
95

01
2

39
28

.0
08

57
1

39
31

.2
64

88
6

10
30

00
12

87
5

12
15

2.
33

69
8

38
98

.2
22

67
39

21
.9

44
92

3
39

12
.8

31
67

5
39

10
.9

99
75

6

10
40

00
13

00
0

12
19

3.
33

32
7

39
06

.9
88

64
6

39
30

.3
09

36
9

39
21

.0
67

63
2

39
19

.4
55

21
6

10
50

00
13

12
5

12
47

9.
84

35
7

39
80

.8
64

60
6

40
03

.6
96

24
9

39
95

.1
49

34
5

39
93

.2
36

73
3

10
60

00
13

25
0

12
35

5.
83

73
9

39
81

.6
94

19
3

40
01

.2
65

44
1

39
98

.1
07

39
93

.6
88

87
8

10
70

00
13

37
5

12
53

7.
14

42
2

40
16

.5
02

56
4

40
34

.8
95

64
8

40
34

.3
93

75
9

40
28

.5
97

32
4

10
80

00
13

50
0

12
21

8.
12

33
7

39
35

.4
71

92
39

55
.7

85
27

1
39

48
.4

29
21

8
39

46
.5

62
13

6

10
90

00
13

62
5

12
48

3.
24

06
8

39
94

.4
93

12
8

40
18

.0
82

86
5

40
09

.5
01

77
8

40
07

.3
59

25
7

11
00

00
13

75
0

12
41

9.
18

35
7

39
98

.6
38

16
5

40
23

.8
36

28
3

40
20

.0
57

09
2

40
14

.1
77

18

11
10

00
13

87
5

12
29

6.
08

03
1

39
66

.0
79

29
39

89
.3

09
54

3
39

88
.5

82
61

8
39

81
.3

23
81

7

11
20

00
14

00
0

12
55

2.
86

63
4

40
46

.6
46

63
7

40
69

.8
57

79
1

40
69

.5
78

83
6

40
62

.0
27

75
5

11
30

00
14

12
5

12
50

5.
62

61
5

40
11

.2
65

51
8

40
35

.6
40

89
5

40
36

.7
49

41
8

40
27

.8
85

27
7

200

B: Data Tables Anycast Policy Throughput

To
ta

l
M

es
sa

ge
s

P
ay

lo
ad

S
iz

e
(k

iB
)

In
pu

tR
at

e
(b

yt
es

/s
ec

)
O

ut
pu

tA
R

at
e

(b
yt

es
/s

ec
)

O
ut

pu
tB

R
at

e
(b

yt
es

/s
ec

)
S

td
.D

ev
ia

tio
n

(b
yt

es
/s

ec
)

D
el

ta
R

at
e

In
pu

t/
O

ut
pu

t
(b

yt
es

/s
ec

)

11
40

00
14

25
0

12
50

9.
47

12
6

40
21

.2
68

94
8

40
47

.7
03

82
6

40
50

.4
66

03
40

39
.8

12
93

5

11
50

00
14

37
5

12
38

5.
60

68
1

39
86

.6
00

98
6

40
14

.2
67

88
4

40
17

.3
55

24
3

40
06

.0
74

70
4

11
60

00
14

50
0

12
45

6.
96

44
1

40
12

.8
53

16
3

40
39

.2
51

21
4

40
44

.7
45

11
7

40
32

.2
83

16
5

11
70

00
14

62
5

12
59

0.
99

00
8

40
36

.7
35

84
8

40
60

.3
68

08
3

40
69

.0
26

99
8

40
55

.3
76

97
6

11
80

00
14

75
0

12
47

2.
09

89
6

40
22

.6
55

72
2

40
45

.1
50

74
1

40
57

.8
53

83
7

40
41

.8
86

76
7

11
90

00
14

87
5

12
34

6.
23

87
5

39
86

.4
72

78
6

40
04

.7
07

11
7

40
18

.6
62

06
6

40
03

.2
80

65
6

12
00

00
15

00
0

12
74

6.
64

08
6

41
00

.5
96

88
4

41
21

.6
44

70
7

41
33

.6
24

71
9

41
18

.6
22

10
3

12
10

00
15

12
5

12
58

6.
86

49
7

40
46

.0
27

28
5

40
70

.9
59

11
1

40
81

.7
19

65
6

40
66

.2
35

35
1

12
20

00
15

25
0

12
80

0.
03

08
9

41
15

.5
34

85
8

41
40

.4
89

33
41

53
.7

43
74

4
41

36
.5

89
31

1

12
30

00
15

37
5

12
93

1.
32

54
1

41
63

.9
61

09
6

41
89

.6
64

77
1

42
04

.7
54

30
3

41
86

.1
26

72
3

12
40

00
15

50
0

12
63

3.
01

34
1

40
70

.2
86

23
6

40
97

.9
11

31
2

41
06

.7
22

43
3

40
91

.6
39

99
4

12
50

00
15

62
5

12
65

8.
25

60
5

40
61

.3
02

24
6

40
88

.0
37

47
9

40
98

.2
54

88
8

40
82

.5
31

53
8

12
60

00
15

75
0

12
53

6.
51

50
9

40
46

.8
45

54
4

40
77

.7
15

80
3

40
85

.8
12

65
1

40
70

.1
24

66
6

12
70

00
15

87
5

12
38

9.
43

76
8

40
02

.9
43

95
1

40
28

.1
71

13
6

40
36

.0
35

72
1

40
22

.3
83

60
3

12
80

00
16

00
0

13
04

0.
04

50
6

41
96

.3
52

44
42

21
.4

52
24

6
42

34
.0

57
37

7
42

17
.2

87
35

4

12
90

00
16

12
5

12
97

7.
31

88
7

41
74

.6
05

09
3

41
98

.0
61

99
1

42
14

.3
11

00
9

41
95

.6
59

36
4

13
00

00
16

25
0

13
05

2.
33

46
4

42
04

.3
06

56
2

42
34

.4
60

76
2

42
51

.7
33

12
8

42
30

.1
66

81
7

13
10

00
16

37
5

12
94

4.
35

19
4

41
67

.1
88

19
9

41
99

.9
75

48
6

42
17

.1
12

70
2

41
94

.7
58

79
6

13
20

00
16

50
0

12
92

6.
43

4
41

54
.7

30
76

8
41

86
.8

22
36

3
42

05
.2

51
08

1
41

82
.2

68
07

1

201

B: Data Tables Anycast Policy Throughput

To
ta

l
M

es
sa

ge
s

P
ay

lo
ad

S
iz

e
(k

iB
)

In
pu

tR
at

e
(b

yt
es

/s
ec

)
O

ut
pu

tA
R

at
e

(b
yt

es
/s

ec
)

O
ut

pu
tB

R
at

e
(b

yt
es

/s
ec

)
S

td
.D

ev
ia

tio
n

(b
yt

es
/s

ec
)

D
el

ta
R

at
e

In
pu

t/
O

ut
pu

t
(b

yt
es

/s
ec

)

13
30

00
16

62
5

12
68

5.
32

37
6

40
93

.1
08

09
8

41
19

.5
84

06
8

41
37

.1
70

46
6

41
16

.6
20

87
7

13
40

00
16

75
0

12
75

3.
85

40
4

41
10

.2
46

28
6

41
40

.6
14

43
4

41
57

.5
62

04
2

41
36

.1
40

92
1

13
50

00
16

87
5

12
78

1.
46

44
2

41
17

.1
12

79
9

41
52

.9
43

61
4

41
67

.8
75

08
4

41
45

.9
77

16
6

13
60

00
17

00
0

12
85

7.
12

43
6

41
45

.1
04

68
5

41
85

.7
41

73
5

42
00

.6
22

62
3

41
77

.1
56

34
8

13
70

00
17

12
5

13
29

2.
14

12
8

42
65

.0
85

31
5

43
02

.1
08

42
7

43
13

.6
48

34
8

42
93

.6
14

03

13
80

00
17

25
0

13
00

2.
00

70
2

41
88

.5
94

11
6

42
25

.3
37

47
9

42
40

.7
68

62
7

42
18

.2
33

40
7

13
90

00
17

37
5

12
49

2.
80

09
1

40
10

.3
37

68
9

40
47

.5
72

60
9

40
59

.9
54

28
3

40
39

.2
88

19
4

14
00

00
17

50
0

12
56

8.
84

69
8

40
43

.5
25

28
7

40
76

.8
67

83
3

40
92

.9
35

80
8

40
71

.1
09

64
3

14
10

00
17

62
5

12
62

0.
20

74
8

40
55

.5
45

65
4

40
87

.4
23

11
41

01
.2

28
90

4
40

81
.3

99
22

3

14
20

00
17

75
0

12
71

0.
19

48
5

41
04

.8
30

96
41

36
.6

41
36

2
41

49
.7

29
59

8
41

30
.4

00
64

14
30

00
17

87
5

12
74

8.
19

30
6

41
14

.5
40

8
41

44
.2

74
78

8
41

56
.4

97
05

41
38

.4
37

54
6

14
40

00
18

00
0

12
54

1.
74

81
3

40
45

.6
19

76
7

40
72

.4
37

14
6

40
84

.9
00

24
3

40
67

.6
52

38
5

14
50

00
18

12
5

12
70

6.
59

05
4

40
98

.0
11

29
41

23
.8

17
65

3
41

32
.8

96
11

41
18

.2
41

68
4

14
60

00
18

25
0

12
61

2.
80

90
5

40
84

.3
61

44
7

41
08

.7
96

58
5

41
21

.4
29

89
7

41
04

.8
62

64
3

14
70

00
18

37
5

12
68

4.
80

22
5

41
05

.7
47

21
8

41
29

.9
84

28
2

41
42

.4
30

1
41

26
.0

53
86

7

14
80

00
18

50
0

12
61

2.
07

16
8

40
66

.6
46

58
3

40
93

.7
36

16
4

41
05

.3
83

86
4

40
88

.5
88

87

14
90

00
18

62
5

12
66

5.
33

36
1

40
75

.6
83

09
1

41
04

.9
78

88
6

41
15

.0
05

37
2

40
98

.5
55

78
3

15
00

00
18

75
0

12
98

4.
15

19
8

41
73

.0
96

66
3

42
02

.1
39

50
6

42
12

.9
06

05
1

41
96

.0
47

40
7

15
10

00
18

87
5

12
37

9.
14

85
6

40
03

.0
78

65
40

33
.3

10
72

2
40

38
.7

85
94

40
25

.0
58

43
7

202

B: Data Tables Anycast Policy Throughput

To
ta

l
M

es
sa

ge
s

P
ay

lo
ad

S
iz

e
(k

iB
)

In
pu

tR
at

e
(b

yt
es

/s
ec

)
O

ut
pu

tA
R

at
e

(b
yt

es
/s

ec
)

O
ut

pu
tB

R
at

e
(b

yt
es

/s
ec

)
S

td
.D

ev
ia

tio
n

(b
yt

es
/s

ec
)

D
el

ta
R

at
e

In
pu

t/
O

ut
pu

t
(b

yt
es

/s
ec

)

15
20

00
19

00
0

12
90

3.
23

78
6

41
75

.2
32

31
42

05
.6

29
65

7
42

10
.5

91
31

8
41

97
.1

51
09

5

15
30

00
19

12
5

13
02

0.
28

26
2

41
97

.1
22

33
2

42
26

.7
64

99
4

42
32

.1
80

33
7

42
18

.6
89

22
1

15
40

00
19

25
0

12
83

4.
02

31
6

41
48

.0
40

08
7

41
77

.4
94

30
8

41
81

.8
43

49
9

41
69

.1
25

96
5

15
50

00
19

37
5

10
65

3.
69

31
27

78
.9

53
94

27
81

.7
37

67
5

27
59

.0
66

63
3

27
73

.2
52

74
9

15
60

00
19

50
0

11
49

1.
87

44
36

89
.5

85
59

4
37

15
.6

69
74

7
37

19
.4

71
41

8
37

08
.2

42
25

3

15
70

00
19

62
5

12
37

3.
18

17
8

39
87

.7
26

94
40

15
.0

22
33

3
40

22
.9

20
30

6
40

08
.5

56
52

6

15
80

00
19

75
0

12
25

1.
74

03
9

39
25

.0
41

71
3

39
50

.8
11

52
8

39
58

.7
19

98
7

39
44

.8
57

74
3

15
90

00
19

87
5

12
60

3.
30

44
9

40
82

.0
10

43
9

41
10

.1
39

23
5

41
17

.0
53

65
7

41
03

.0
67

77
7

16
00

00
20

00
0

12
95

9.
67

67
41

78
.0

68
87

1
42

07
.5

05
74

2
42

15
.2

81
12

4
42

00
.2

85
24

6

16
10

00
20

12
5

12
36

9.
40

19
7

39
86

.6
11

18
5

40
17

.1
68

37
5

40
23

.4
80

66
7

40
09

.0
86

74
2

16
20

00
20

25
0

12
54

8.
31

87
7

40
33

.8
81

12
8

40
63

.3
56

39
8

40
71

.3
15

81
5

40
56

.1
84

44
7

16
30

00
20

37
5

12
69

2.
61

03
6

41
09

.3
46

44
6

41
39

.8
66

11
4

41
46

.4
31

72
1

41
31

.8
81

42
7

16
40

00
20

50
0

12
70

1.
31

09
4

41
14

.7
70

63
6

41
46

.0
63

91
1

41
48

.8
73

57
3

41
36

.5
69

37
3

16
50

00
20

62
5

12
73

1.
94

71
4

41
02

.9
81

18
6

41
35

.1
50

88
2

41
37

.7
19

47
6

41
25

.2
83

84
8

16
60

00
20

75
0

13
11

2.
63

45
3

42
36

.4
74

44
8

42
69

.5
55

97
3

42
71

.1
07

82
4

42
59

.0
46

08
2

16
70

00
20

87
5

12
95

6.
70

84
6

41
87

.4
35

11
2

42
19

.7
90

64
3

42
22

.1
97

29
1

42
09

.8
07

68
2

16
80

00
21

00
0

12
95

3.
61

25
7

41
94

.5
69

60
3

42
25

.2
33

30
5

42
27

.9
53

99
2

42
15

.9
18

96
7

16
90

00
21

12
5

12
86

9.
92

36
8

41
57

.6
96

83
7

41
87

.2
27

08
1

41
90

.4
06

95
6

41
78

.4
43

62
5

17
00

00
21

25
0

12
73

2.
47

05
7

41
01

.9
68

08
9

41
33

.4
54

75
2

41
33

.9
58

63
6

41
23

.1
27

15
9

203

B: Data Tables Anycast Policy Throughput

To
ta

l
M

es
sa

ge
s

P
ay

lo
ad

S
iz

e
(k

iB
)

In
pu

tR
at

e
(b

yt
es

/s
ec

)
O

ut
pu

tA
R

at
e

(b
yt

es
/s

ec
)

O
ut

pu
tB

R
at

e
(b

yt
es

/s
ec

)
S

td
.D

ev
ia

tio
n

(b
yt

es
/s

ec
)

D
el

ta
R

at
e

In
pu

t/
O

ut
pu

t
(b

yt
es

/s
ec

)

17
10

00
21

37
5

12
75

6.
32

85
4

41
34

.2
28

76
1

41
67

.7
19

42
6

41
66

.6
24

91
8

41
56

.1
91

03
5

17
20

00
21

50
0

12
69

0.
40

68
3

41
15

.3
26

32
9

41
47

.3
25

06
6

41
46

.4
74

13
4

41
36

.3
75

17
6

17
30

00
21

62
5

12
71

9.
48

83
7

41
11

.7
85

18
4

41
43

.7
53

53
6

41
41

.5
10

80
9

41
32

.3
49

84
3

17
40

00
21

75
0

12
54

2.
92

52
8

40
44

.2
22

68
2

40
74

.2
55

78
3

40
72

.7
47

69
5

40
63

.7
42

05
3

17
50

00
21

87
5

12
58

2.
59

30
4

40
87

.4
86

97
4

41
14

.2
80

43
8

41
13

.6
39

44
41

05
.1

35
61

7

17
60

00
22

00
0

12
76

1.
25

31
2

41
43

.3
23

69
3

41
69

.6
57

84
9

41
68

.7
00

52
3

41
60

.5
60

68
8

17
70

00
22

12
5

12
49

5.
07

60
9

40
55

.7
99

16
3

40
78

.6
72

57
6

40
79

.8
24

43
9

40
71

.4
32

05
9

17
80

00
22

25
0

12
97

8.
16

14
42

08
.0

36
54

2
42

30
.1

00
74

5
42

31
.4

93
89

42
23

.2
10

39
2

17
90

00
22

37
5

12
81

2.
45

11
3

41
67

.4
76

58
4

41
92

.1
62

51
4

41
90

.9
01

05
8

41
83

.5
13

38
5

18
00

00
22

50
0

12
76

0.
02

81
1

41
49

.9
99

95
8

41
72

.5
07

88
8

41
71

.8
22

01
2

41
64

.7
76

61
9

18
10

00
22

62
5

12
83

2.
39

81
41

62
.0

97
34

4
41

82
.7

17
80

4
41

83
.4

31
14

8
41

76
.0

82
09

9

18
20

00
22

75
0

12
98

3.
97

31
4

42
21

.6
38

47
42

45
.4

17
02

42
43

.8
85

35
3

42
36

.9
80

28
1

18
30

00
22

87
5

12
44

7.
04

31
39

32
.2

66
37

3
39

53
.8

16
01

8
39

54
.2

84
45

4
39

46
.7

88
94

8

18
40

00
23

00
0

13
38

5.
12

79
6

43
50

.7
02

90
9

43
77

.5
30

01
7

43
75

.9
59

01
4

43
68

.0
63

98

18
50

00
23

12
5

12
78

6.
86

73
2

41
43

.2
32

57
3

41
72

.9
47

16
3

41
72

.7
81

39
5

41
62

.9
87

04
4

18
60

00
23

25
0

12
67

3.
56

99
9

41
10

.6
62

31
9

41
36

.5
80

21
8

41
37

.4
06

94
7

41
28

.2
16

49
5

18
70

00
23

37
5

12
55

6.
30

61
4

40
67

.5
76

88
8

40
94

.2
60

04
3

40
95

.0
53

56
9

40
85

.6
30

16
7

18
80

00
23

50
0

12
97

8.
34

34
3

42
19

.8
97

46
42

46
.3

59
33

4
42

46
.4

88
58

4
42

37
.5

81
79

3

18
90

00
23

62
5

12
78

0.
19

21
9

41
47

.7
79

68
8

41
74

.8
48

62
9

41
73

.4
85

51
3

41
65

.3
71

27
7

204

B: Data Tables Anycast Policy Throughput

To
ta

l
M

es
sa

ge
s

P
ay

lo
ad

S
iz

e
(k

iB
)

In
pu

tR
at

e
(b

yt
es

/s
ec

)
O

ut
pu

tA
R

at
e

(b
yt

es
/s

ec
)

O
ut

pu
tB

R
at

e
(b

yt
es

/s
ec

)
S

td
.D

ev
ia

tio
n

(b
yt

es
/s

ec
)

D
el

ta
R

at
e

In
pu

t/
O

ut
pu

t
(b

yt
es

/s
ec

)

19
00

00
23

75
0

12
82

8.
05

03
8

41
70

.1
15

05
1

41
98

.7
15

06
6

41
94

.8
35

33
7

41
87

.8
88

48
5

19
10

00
23

87
5

12
67

9.
63

92
9

41
08

.3
23

38
9

41
36

.9
34

26
41

33
.5

11
50

8
41

26
.2

56
38

6

19
20

00
24

00
0

12
86

8.
76

12
2

41
88

.9
09

99
5

42
14

.8
16

75
2

42
14

.8
50

96
1

42
06

.1
92

56
9

19
30

00
24

12
5

13
01

9.
21

10
3

42
20

.9
51

70
3

42
45

.0
40

89
8

42
43

.5
90

09
6

42
36

.5
27

56
6

19
40

00
24

25
0

13
02

7.
09

97
9

42
33

.8
86

80
6

42
60

.5
40

24
5

42
56

.5
39

80
4

42
50

.3
22

28
5

19
50

00
24

37
5

12
69

1.
52

07
4

41
08

.0
21

03
41

34
.6

85
08

4
41

30
.6

75
27

1
41

24
.4

60
46

2

19
60

00
24

50
0

12
93

0.
38

21
6

42
10

.6
24

91
42

36
.1

13
62

9
42

31
.6

08
71

4
42

26
.1

15
75

1

19
70

00
24

62
5

12
57

5.
24

32
40

75
.3

70
66

5
41

00
.0

10
36

3
40

95
.7

71
16

8
40

90
.3

84
06

5

19
80

00
24

75
0

12
67

0.
01

41
5

41
26

.1
11

82
41

48
.9

83
92

8
41

46
.5

97
58

5
41

40
.5

64
44

4

19
90

00
24

87
5

12
80

6.
87

01
5

41
75

.9
27

39
6

41
97

.2
93

68
9

41
96

.9
69

25
41

90
.0

63
44

5

20
00

00
25

00
0

12
52

2.
92

08
6

40
64

.3
39

19
2

40
85

.2
04

24
5

40
84

.6
66

3
40

78
.0

69
91

2

20
10

00
25

12
5

12
73

6.
89

75
8

41
35

.4
53

99
4

41
54

.2
01

57
7

41
59

.8
13

73
7

41
49

.8
23

10
3

20
20

00
25

25
0

12
71

1.
53

05
7

41
51

.4
81

26
1

41
70

.4
84

68
41

75
.1

15
93

41
65

.6
93

95
7

20
30

00
25

37
5

13
02

6.
20

41
42

26
.6

25
98

5
42

46
.0

92
41

2
42

50
.3

55
11

6
42

41
.0

24
50

4

20
40

00
25

50
0

13
15

7.
62

57
1

42
80

.4
91

61
42

98
.8

50
03

6
43

04
.7

81
38

7
42

94
.7

07
67

8

20
50

00
25

62
5

12
60

9.
05

29
3

41
07

.7
19

57
4

41
23

.3
31

80
4

41
30

.6
69

84
2

41
20

.5
73

74

20
60

00
25

75
0

12
81

4.
58

40
4

41
83

.7
41

25
1

41
98

.4
52

13
2

42
07

.4
64

55
5

41
96

.5
52

64
6

20
70

00
25

87
5

12
84

1.
28

98
5

41
88

.1
58

38
5

42
02

.0
35

99
2

42
09

.5
87

12
6

41
99

.9
27

16
8

20
80

00
26

00
0

13
09

6.
61

94
9

42
54

.9
41

86
7

42
69

.3
15

94
1

42
75

.7
48

32
1

42
66

.6
68

71

205

B: Data Tables Anycast Policy Throughput

To
ta

l
M

es
sa

ge
s

P
ay

lo
ad

S
iz

e
(k

iB
)

In
pu

tR
at

e
(b

yt
es

/s
ec

)
O

ut
pu

tA
R

at
e

(b
yt

es
/s

ec
)

O
ut

pu
tB

R
at

e
(b

yt
es

/s
ec

)
S

td
.D

ev
ia

tio
n

(b
yt

es
/s

ec
)

D
el

ta
R

at
e

In
pu

t/
O

ut
pu

t
(b

yt
es

/s
ec

)

20
90

00
26

12
5

12
96

7.
24

02
2

42
27

.5
30

95
2

42
42

.9
62

84
6

42
47

.7
69

35
4

42
39

.4
21

05
1

21
00

00
26

25
0

13
01

9.
09

13
2

42
30

.3
28

04
9

42
44

.8
04

51
6

42
50

.3
77

2
42

41
.8

36
58

8

21
10

00
26

37
5

12
60

8.
05

05
5

41
02

.0
12

81
9

41
17

.5
85

37
8

41
22

.3
02

56
7

41
13

.9
66

92
1

21
20

00
26

50
0

12
27

7.
53

34
1

40
05

.7
55

46
7

40
21

.5
72

02
7

40
23

.5
55

26
6

40
16

.9
60

92

21
30

00
26

62
5

13
07

7.
86

03
42

63
.1

30
43

7
42

79
.9

86
11

9
42

79
.3

50
92

4
42

74
.1

55
82

7

21
40

00
26

75
0

12
75

5.
72

69
9

41
70

.5
81

91
7

41
91

.9
47

62
6

41
89

.5
62

68
7

41
84

.0
30

74
3

21
50

00
26

87
5

13
07

8.
46

18
9

42
66

.9
64

64
7

42
86

.8
68

11
8

42
85

.1
66

62
6

42
79

.6
66

46
4

21
60

00
27

00
0

12
60

1.
86

36
1

41
08

.4
51

65
41

27
.5

69
40

4
41

26
.9

73
07

1
41

20
.9

98
04

2

21
70

00
27

12
5

12
59

6.
37

67
9

41
07

.0
64

85
5

41
29

.9
17

58
5

41
27

.2
64

93
3

41
21

.4
15

79
1

21
80

00
27

25
0

13
31

9.
62

51
2

43
46

.6
63

28
9

43
70

.7
06

59
5

43
67

.1
50

74
2

43
61

.5
06

87
5

21
90

00
27

37
5

12
74

8.
50

26
6

41
65

.4
94

55
5

41
87

.5
97

77
7

41
85

.4
22

88
4

41
79

.5
05

07
2

22
00

00
27

50
0

12
92

6.
01

19
8

42
18

.4
24

10
6

42
39

.2
91

41
42

37
.8

00
23

5
42

31
.8

38
58

4

22
10

00
27

62
5

12
85

1.
20

12
3

41
84

.1
69

19
9

42
04

.9
52

62
4

42
05

.2
19

74
7

41
98

.1
13

85
7

22
20

00
27

75
0

12
65

6.
53

12
2

41
31

.3
36

22
9

41
53

.2
92

98
3

41
54

.0
62

99
6

41
46

.2
30

73
6

22
30

00
27

87
5

12
43

0.
79

30
9

40
59

.3
10

72
3

40
84

.1
44

04
9

40
83

.4
41

58
7

40
75

.6
32

12

22
40

00
28

00
0

13
25

1.
82

35
8

43
19

.0
00

17
4

43
46

.0
42

05
8

43
48

.0
47

94
43

37
.6

96
72

4

22
50

00
28

12
5

12
91

1.
38

61
7

41
99

.8
94

17
4

42
26

.2
34

58
2

42
30

.6
66

54
3

42
18

.9
31

76
6

22
60

00
28

25
0

12
78

9.
80

22
41

75
.0

11
01

1
42

02
.5

41
19

7
42

06
.4

30
73

3
41

94
.6

60
98

22
70

00
28

37
5

13
01

5.
28

93
5

42
41

.5
87

82
6

42
72

.5
44

30
3

42
76

.5
52

06
42

63
.5

61
39

6

206

B: Data Tables Anycast Policy Throughput

To
ta

l
M

es
sa

ge
s

P
ay

lo
ad

S
iz

e
(k

iB
)

In
pu

tR
at

e
(b

yt
es

/s
ec

)
O

ut
pu

tA
R

at
e

(b
yt

es
/s

ec
)

O
ut

pu
tB

R
at

e
(b

yt
es

/s
ec

)
S

td
.D

ev
ia

tio
n

(b
yt

es
/s

ec
)

D
el

ta
R

at
e

In
pu

t/
O

ut
pu

t
(b

yt
es

/s
ec

)

22
80

00
28

50
0

12
99

1.
77

79
7

42
31

.3
71

49
2

42
63

.4
66

64
5

42
66

.1
58

05
42

53
.6

65
39

6

22
90

00
28

62
5

13
07

8.
57

56
3

42
53

.9
46

59
6

42
82

.9
40

73
1

42
88

.5
08

10
1

42
75

.1
31

80
9

23
00

00
28

75
0

13
04

4.
22

41
7

42
53

.7
74

35
7

42
82

.5
47

13
2

42
89

.6
50

34
3

42
75

.3
23

94
4

23
10

00
28

87
5

13
28

9.
10

15
3

43
23

.0
14

73
9

43
54

.3
92

22
9

43
59

.7
61

75
1

43
45

.7
22

90
6

23
20

00
29

00
0

13
11

3.
30

26
7

42
80

.8
61

16
5

43
10

.0
52

38
5

43
15

.1
65

57
1

43
02

.0
26

37
4

23
30

00
29

12
5

13
01

4.
35

17
6

42
44

.4
79

23
2

42
75

.7
65

47
7

42
78

.9
93

47
7

42
66

.4
12

72
9

23
40

00
29

25
0

13
00

0.
00

93
9

42
20

.2
82

75
7

42
51

.7
90

69
4

42
55

.0
83

69
8

42
42

.3
85

71
6

23
50

00
29

37
5

13
12

1.
36

06
4

42
79

.0
02

83
9

43
08

.8
45

53
8

43
13

.2
39

85
4

43
00

.3
62

74
4

23
60

00
29

50
0

13
01

8.
31

00
9

42
51

.9
43

25
3

42
80

.8
06

07
9

42
83

.5
51

96
5

42
72

.1
00

43
2

23
70

00
29

62
5

12
55

7.
00

25
7

40
86

.9
63

68
9

41
13

.9
60

73
2

41
16

.3
90

03
8

41
05

.7
71

48
6

23
80

00
29

75
0

13
00

3.
83

22
5

42
47

.6
23

75
7

42
73

.5
77

68
6

42
77

.8
63

59
1

42
66

.3
55

01
1

23
90

00
29

87
5

13
25

5.
52

17
6

43
32

.4
15

78
43

58
.1

84
29

9
43

61
.5

45
82

7
43

50
.7

15
30

2

24
00

00
30

00
0

13
07

6.
32

97
42

72
.8

06
29

42
97

.6
02

16
7

43
00

.8
04

99
5

42
90

.4
04

48
4

24
10

00
30

12
5

13
03

2.
54

64
9

42
48

.3
72

65
3

42
73

.0
14

86
8

42
77

.3
04

62
9

42
66

.2
30

71
7

24
20

00
30

25
0

12
80

2.
22

37
4

41
79

.0
86

12
4

42
03

.7
90

35
2

42
05

.8
12

54
9

41
96

.2
29

67
5

24
30

00
30

37
5

12
91

9.
70

70
5

42
13

.1
02

58
7

42
37

.5
33

01
7

42
40

.5
27

96
8

42
30

.3
87

85
7

24
40

00
30

50
0

13
08

9.
91

87
8

42
76

.7
16

68
43

02
.7

07
41

2
43

04
.3

32
72

6
42

94
.5

85
60

6

24
50

00
30

62
5

13
24

2.
26

97
6

43
11

.8
64

17
8

43
37

.7
43

43
1

43
36

.6
11

02
8

43
28

.7
39

54
6

24
60

00
30

75
0

13
06

7.
87

20
8

42
71

.6
07

68
1

42
97

.5
74

12
42

95
.6

66
04

6
42

88
.2

82
61

6

207

B: Data Tables Anycast Policy Throughput

To
ta

l
M

es
sa

ge
s

P
ay

lo
ad

S
iz

e
(k

iB
)

In
pu

tR
at

e
(b

yt
es

/s
ec

)
O

ut
pu

tA
R

at
e

(b
yt

es
/s

ec
)

O
ut

pu
tB

R
at

e
(b

yt
es

/s
ec

)
S

td
.D

ev
ia

tio
n

(b
yt

es
/s

ec
)

D
el

ta
R

at
e

In
pu

t/
O

ut
pu

t
(b

yt
es

/s
ec

)

24
70

00
30

87
5

13
24

4.
57

64
4

43
25

.9
16

81
4

43
52

.0
16

04
6

43
51

.4
77

77
7

43
43

.1
36

87
9

24
80

00
31

00
0

13
05

6.
21

17
3

42
58

.2
14

38
3

42
86

.0
40

51
7

42
86

.1
31

45
2

42
76

.7
95

45
1

24
90

00
31

12
5

12
87

6.
30

01
8

42
02

.9
30

56
6

42
32

.3
77

77
9

42
29

.9
01

66
6

42
21

.7
36

67

25
00

00
31

25
0

12
93

4.
13

28
8

42
27

.2
96

70
9

42
55

.7
06

71
5

42
53

.4
24

21
1

42
45

.4
75

87
8

25
10

00
31

37
5

13
18

2.
17

97
7

43
11

.9
07

64
4

43
40

.0
67

21
4

43
36

.8
15

49
9

43
29

.5
96

78
6

25
20

00
31

50
0

13
56

4.
18

86
5

44
31

.6
75

49
44

59
.1

25
96

1
44

56
.4

57
34

3
44

49
.0

86
26

5

25
30

00
31

62
5

13
04

7.
69

57
2

42
56

.8
41

71
5

42
83

.5
03

28
7

42
81

.3
27

96
4

42
73

.8
90

98
9

25
40

00
31

75
0

13
09

4.
59

65
42

84
.3

30
76

9
43

11
.3

40
80

7
43

08
.7

22
39

1
43

01
.4

64
65

6

25
50

00
31

87
5

13
12

6.
27

45
42

92
.9

20
94

2
43

21
.8

43
70

5
43

17
.4

82
07

6
43

10
.7

48
90

8

25
60

00
32

00
0

13
55

7.
02

06
4

44
27

.9
72

59
1

44
57

.8
00

21
6

44
53

.9
90

97
4

44
46

.5
87

92
7

25
70

00
32

12
5

13
37

1.
17

91
5

43
55

.3
39

26
4

43
85

.1
77

10
8

43
82

.1
89

39
8

43
74

.2
35

25
7

25
80

00
32

25
0

13
33

5.
27

74
6

43
61

.3
04

79
6

43
92

.7
10

17
8

43
88

.0
18

47
6

43
80

.6
77

81
7

25
90

00
32

37
5

13
51

3.
91

40
1

44
20

.9
09

57
4

44
51

.2
67

32
1

44
47

.7
18

40
6

44
39

.9
65

1

26
00

00
32

50
0

13
21

4.
90

94
5

43
17

.5
84

62
9

43
44

.9
81

30
8

43
40

.6
94

96
7

43
34

.4
20

30
1

26
10

00
32

62
5

13
55

0.
05

10
9

44
19

.2
52

20
7

44
47

.5
45

21
44

43
.6

78
84

9
44

36
.8

25
42

2

26
20

00
32

75
0

13
52

9.
63

35
1

44
20

.6
19

43
2

44
48

.0
05

21
44

46
.5

22
22

4
44

38
.3

82
28

9

26
30

00
32

87
5

13
45

0.
98

18
6

43
94

.4
18

31
44

23
.5

71
28

3
44

21
.2

52
04

2
44

13
.0

80
54

5

26
40

00
33

00
0

13
48

8.
11

14
6

44
11

.7
98

05
9

44
39

.1
60

45
8

44
35

.3
46

55
6

44
28

.7
68

35
8

26
50

00
33

12
5

13
21

6.
76

77
6

43
18

.5
03

94
4

43
44

.4
95

85
7

43
40

.6
42

41
8

43
34

.5
47

40
6

208

B: Data Tables Anycast Policy Throughput

To
ta

l
M

es
sa

ge
s

P
ay

lo
ad

S
iz

e
(k

iB
)

In
pu

tR
at

e
(b

yt
es

/s
ec

)
O

ut
pu

tA
R

at
e

(b
yt

es
/s

ec
)

O
ut

pu
tB

R
at

e
(b

yt
es

/s
ec

)
S

td
.D

ev
ia

tio
n

(b
yt

es
/s

ec
)

D
el

ta
R

at
e

In
pu

t/
O

ut
pu

t
(b

yt
es

/s
ec

)

26
60

00
33

25
0

12
81

1.
20

94
4

41
89

.9
45

32
9

42
13

.6
49

17
4

42
10

.0
95

51
7

42
04

.5
63

34

26
70

00
33

37
5

12
91

9.
05

77
42

22
.8

52
86

1
42

48
.3

78
32

6
42

43
.8

60
55

8
42

38
.3

63
91

5

26
80

00
33

50
0

13
04

8.
75

11
1

42
68

.3
37

04
1

42
95

.3
90

55
7

42
88

.3
10

97
42

84
.0

12
85

6

26
90

00
33

62
5

13
11

8.
39

83
7

42
79

.1
89

09
43

07
.7

51
46

3
42

98
.9

95
20

8
42

95
.3

11
92

27
00

00
33

75
0

12
75

4.
14

22
3

41
74

.1
38

77
5

42
01

.6
50

30
6

41
91

.4
91

59
1

41
89

.0
93

55
7

27
10

00
33

87
5

13
15

7.
12

17
7

43
11

.4
23

17
3

43
38

.7
61

31
9

43
27

.8
37

06
4

43
26

.0
07

18
5

27
20

00
34

00
0

13
21

5.
54

91
43

28
.0

99
97

1
43

55
.2

90
15

1
43

43
.4

61
16

9
43

42
.2

83
76

4

27
30

00
34

12
5

13
35

4.
76

35
7

43
59

.7
15

20
3

43
87

.1
30

30
1

43
75

.4
85

55
5

43
74

.1
10

35
3

27
40

00
34

25
0

13
11

1.
54

09
3

42
95

.0
63

51
2

43
22

.4
98

47
1

43
09

.3
81

71
4

43
08

.9
81

23
2

27
50

00
34

37
5

13
20

9.
13

1
43

23
.0

20
61

9
43

52
.2

89
60

1
43

38
.8

76
89

8
43

38
.0

62
37

3

27
60

00
34

50
0

13
31

4.
61

31
2

43
62

.3
75

80
7

43
91

.5
68

52
4

43
77

.2
62

10
5

43
77

.0
68

81
2

27
70

00
34

62
5

13
18

4.
18

42
43

16
.6

01
3

43
46

.0
34

71
4

43
30

.0
79

78
5

43
30

.9
05

26
6

27
80

00
34

75
0

12
95

1.
95

38
9

42
44

.3
50

25
7

42
71

.8
90

49
9

42
57

.0
43

43
4

42
57

.7
61

39
7

27
90

00
34

87
5

13
08

7.
43

03
7

42
89

.1
81

77
7

43
19

.4
62

52
2

43
03

.7
34

54
8

43
04

.1
26

28
2

28
00

00
35

00
0

12
74

6.
60

64
3

41
76

.2
70

89
5

42
07

.9
51

46
1

41
92

.8
82

67
8

41
92

.3
68

34
5

28
10

00
35

12
5

13
36

2.
65

89
43

64
.7

89
05

5
43

96
.5

81
80

1
43

80
.4

23
47

9
43

80
.5

98
11

2

28
20

00
35

25
0

13
00

3.
33

99
2

42
63

.4
90

52
4

42
96

.8
06

76
8

42
78

.3
80

89
5

42
79

.5
59

39
6

28
30

00
35

37
5

13
16

8.
16

33
1

43
11

.9
60

54
8

43
46

.9
08

37
1

43
28

.1
77

28
6

43
29

.0
15

40
2

28
40

00
35

50
0

13
01

6.
31

99
4

42
58

.4
13

87
8

42
92

.4
53

48
9

42
76

.6
13

82
5

42
75

.8
27

06
4

209

B: Data Tables Anycast Policy Throughput

To
ta

l
M

es
sa

ge
s

P
ay

lo
ad

S
iz

e
(k

iB
)

In
pu

tR
at

e
(b

yt
es

/s
ec

)
O

ut
pu

tA
R

at
e

(b
yt

es
/s

ec
)

O
ut

pu
tB

R
at

e
(b

yt
es

/s
ec

)
S

td
.D

ev
ia

tio
n

(b
yt

es
/s

ec
)

D
el

ta
R

at
e

In
pu

t/
O

ut
pu

t
(b

yt
es

/s
ec

)

28
50

00
35

62
5

13
10

2.
60

06
7

42
83

.2
94

23
2

43
19

.1
52

39
6

43
01

.3
17

80
3

43
01

.2
54

81

28
60

00
35

75
0

13
26

6.
98

29
6

43
47

.5
75

40
7

43
84

.8
13

92
3

43
68

.2
35

09
9

43
66

.8
74

81

28
70

00
35

87
5

13
23

9.
44

00
2

43
27

.9
53

39
4

43
67

.0
48

78
9

43
49

.2
06

66
43

48
.0

69
61

4

28
80

00
36

00
0

13
34

1.
30

72
4

43
63

.9
15

71
8

44
02

.7
81

76
43

86
.2

72
07

4
43

84
.3

23
18

4

28
90

00
36

12
5

13
29

9.
93

71
5

43
44

.3
74

11
4

43
83

.3
84

17
4

43
65

.1
10

08
8

43
64

.2
89

45
9

29
00

00
36

25
0

12
88

6.
50

74
6

42
14

.6
26

83
3

42
52

.2
68

53
8

42
36

.1
94

56
9

42
34

.3
63

31
3

29
10

00
36

37
5

13
12

6.
92

86
9

42
97

.5
35

79
9

43
35

.9
21

20
8

43
18

.9
12

44
8

43
17

.4
56

48
5

29
20

00
36

50
0

13
85

8.
35

16
1

45
25

.7
78

38
5

45
64

.5
82

47
6

45
48

.3
56

30
9

45
46

.2
39

05
7

29
30

00
36

62
5

13
52

2.
28

78
5

44
15

.4
90

65
9

44
54

.5
97

05
1

44
36

.0
79

85
5

44
35

.3
89

18
8

29
40

00
36

75
0

13
27

5.
94

69
2

43
43

.4
74

36
8

43
81

.4
99

53
2

43
63

.1
15

71
1

43
62

.6
96

53
7

29
50

00
36

87
5

13
83

1.
83

84
2

45
17

.9
25

90
4

45
56

.9
71

43
3

45
38

.1
56

87
6

45
37

.6
84

73
8

29
60

00
37

00
0

13
61

5.
32

44
9

44
54

.8
30

87
6

44
93

.4
03

44
6

44
73

.7
45

5
44

73
.9

93
27

4

29
70

00
37

12
5

13
24

1.
37

13
4

43
32

.2
18

02
43

68
.8

97
93

6
43

49
.7

08
41

7
43

50
.2

74
79

1

29
80

00
37

25
0

13
33

5.
21

81
6

43
69

.0
92

8
44

08
.1

75
16

43
87

.7
51

59
5

43
88

.3
39

85
2

29
90

00
37

37
5

13
11

5.
41

91
1

42
91

.3
83

72
4

43
30

.7
12

24
6

43
10

.7
77

06
4

43
10

.9
57

67
8

30
00

00
37

50
0

13
42

4.
74

81
1

43
94

.2
93

81
4

44
33

.1
72

70
3

44
14

.2
34

93
5

44
13

.9
00

48
4

30
10

00
37

62
5

13
37

7.
32

17
6

43
70

.3
42

46
6

44
09

.5
33

75
4

43
89

.5
58

07
7

43
89

.8
11

43
2

30
20

00
37

75
0

12
89

6.
11

18
7

42
25

.4
52

69
9

42
63

.9
25

13
1

42
43

.9
21

47
7

42
44

.4
33

10
2

30
30

00
37

87
5

13
28

5.
34

35
7

43
48

.1
05

49
5

43
87

.4
15

13
1

43
66

.8
17

14
7

43
67

.4
45

92
4

210

B: Data Tables Anycast Policy Throughput

To
ta

l
M

es
sa

ge
s

P
ay

lo
ad

S
iz

e
(k

iB
)

In
pu

tR
at

e
(b

yt
es

/s
ec

)
O

ut
pu

tA
R

at
e

(b
yt

es
/s

ec
)

O
ut

pu
tB

R
at

e
(b

yt
es

/s
ec

)
S

td
.D

ev
ia

tio
n

(b
yt

es
/s

ec
)

D
el

ta
R

at
e

In
pu

t/
O

ut
pu

t
(b

yt
es

/s
ec

)

30
40

00
38

00
0

13
46

1.
98

32
5

44
09

.5
74

12
5

44
48

.0
08

98
2

44
28

.2
36

26
9

44
28

.6
06

45
9

30
50

00
38

12
5

13
21

5.
52

70
9

43
24

.3
35

55
9

43
61

.4
68

54
2

43
40

.7
94

10
2

43
42

.1
99

40
1

30
60

00
38

25
0

13
04

7.
85

53
6

42
78

.6
16

63
3

43
16

.5
34

99
1

42
92

.3
83

79
5

42
95

.8
45

14

30
70

00
38

37
5

13
21

8.
81

67
6

43
36

.3
91

44
7

43
72

.2
91

99
9

43
49

.6
72

18
5

43
52

.7
85

21

30
80

00
38

50
0

13
02

3.
31

58
4

42
68

.3
89

30
6

43
02

.7
97

81
5

42
80

.5
02

57
7

42
83

.8
96

56
6

30
90

00
38

62
5

13
13

0.
35

75
5

42
96

.1
22

18
2

43
29

.0
54

41
43

07
.2

19
99

6
43

10
.7

98
86

3

31
00

00
38

75
0

13
22

5.
49

06
9

43
24

.7
72

01
5

43
58

.5
55

96
9

43
34

.5
80

84
9

43
39

.3
02

94
4

31
10

00
38

87
5

12
88

8.
44

36
42

29
.9

20
34

1
42

62
.1

34
44

8
42

36
.6

59
46

5
42

42
.9

04
75

1

31
20

00
39

00
0

13
06

3.
02

91
2

42
90

.8
41

04
4

43
24

.1
81

62
2

42
98

.0
79

50
8

43
04

.3
67

39
1

31
30

00
39

12
5

12
97

8.
32

16
4

42
50

.5
10

22
4

42
83

.3
39

30
2

42
57

.9
74

99
2

42
63

.9
41

50
6

31
40

00
39

25
0

13
04

7.
36

93
5

42
68

.3
05

69
3

43
00

.3
88

29
6

42
75

.4
98

28
1

42
81

.3
97

42
3

31
50

00
39

37
5

12
98

2.
66

50
9

42
50

.7
84

67
4

42
81

.9
93

19
7

42
58

.8
45

34
4

42
63

.8
74

40
5

31
60

00
39

50
0

13
09

3.
82

24
6

42
95

.3
70

52
5

43
24

.3
90

89
6

43
02

.3
14

36
8

43
07

.3
58

59
6

31
70

00
39

62
5

13
15

1.
49

96
8

43
06

.9
44

18
8

43
36

.6
28

89
43

12
.2

58
46

2
43

18
.6

10
51

3

31
80

00
39

75
0

13
04

2.
24

46
5

42
67

.2
22

46
4

42
96

.1
25

11
42

71
.9

02
23

42
78

.4
16

60
1

31
90

00
39

87
5

12
97

2.
51

94
5

42
45

.0
80

44
2

42
74

.9
22

81
5

42
51

.7
97

38
8

42
57

.2
66

88
2

32
00

00
40

00
0

13
40

0.
81

48
1

43
85

.4
40

55
2

44
15

.4
86

46
2

43
91

.6
72

86
2

43
97

.5
33

29
2

32
10

00
40

12
5

12
30

0.
67

05
3

37
50

.1
25

41
1

37
71

.9
86

85
7

37
70

.5
34

02
4

37
64

.2
15

43
1

32
20

00
40

25
0

12
88

1.
84

98
3

42
27

.1
23

99
7

42
54

.9
39

93
4

42
31

.6
90

01
7

42
37

.9
17

98
3

211

B: Data Tables Anycast Policy Throughput

To
ta

l
M

es
sa

ge
s

P
ay

lo
ad

S
iz

e
(k

iB
)

In
pu

tR
at

e
(b

yt
es

/s
ec

)
O

ut
pu

tA
R

at
e

(b
yt

es
/s

ec
)

O
ut

pu
tB

R
at

e
(b

yt
es

/s
ec

)
S

td
.D

ev
ia

tio
n

(b
yt

es
/s

ec
)

D
el

ta
R

at
e

In
pu

t/
O

ut
pu

t
(b

yt
es

/s
ec

)

32
30

00
40

37
5

12
82

9.
79

06
6

42
11

.9
14

61
42

39
.8

75
55

42
17

.0
42

51
7

42
22

.9
44

22
6

32
40

00
40

50
0

13
23

2.
56

59
8

43
44

.3
71

53
1

43
72

.8
13

45
7

43
49

.2
04

67
5

43
55

.4
63

22
1

32
50

00
40

62
5

13
07

0.
60

84
7

42
82

.0
02

89
3

43
09

.7
99

00
2

42
86

.5
02

55
2

42
92

.7
68

14
9

32
60

00
40

75
0

12
77

1.
57

27
41

73
.8

67
77

42
00

.7
04

72
4

41
77

.4
98

90
4

41
84

.0
23

79
9

32
70

00
40

87
5

13
15

0.
41

46
8

43
09

.5
88

55
43

38
.1

33
33

5
43

14
.0

07
17

6
43

20
.5

76
35

4

32
80

00
41

00
0

13
05

0.
12

28
6

42
79

.5
70

31
7

43
07

.2
34

89
42

83
.6

72
98

42
90

.1
59

39
6

32
90

00
41

12
5

12
75

9.
37

99
7

41
86

.0
95

47
8

42
12

.5
21

45
41

89
.1

49
52

1
41

95
.9

22
15

33
00

00
41

25
0

12
69

9.
73

06
9

41
55

.2
70

52
4

41
80

.6
20

87
2

41
58

.0
51

78
1

41
64

.6
47

72
6

33
10

00
41

37
5

13
16

1.
97

68
5

43
17

.7
47

87
7

43
42

.5
45

26
9

43
19

.5
49

48
4

43
26

.6
14

21

33
20

00
41

50
0

13
25

8.
35

44
1

43
50

.6
89

34
1

43
77

.0
72

65
43

53
.4

00
54

6
43

60
.3

87
51

2

33
30

00
41

62
5

13
17

6.
51

25
2

43
19

.8
09

59
9

43
44

.8
64

15
7

43
20

.1
33

47
7

43
28

.2
69

07
8

33
40

00
41

75
0

12
46

3.
32

92
7

40
36

.3
87

66
7

40
60

.9
08

67
1

40
38

.7
16

39
5

40
45

.3
37

57
8

33
50

00
41

87
5

13
03

7.
44

28
42

82
.7

20
25

6
43

07
.6

18
59

3
42

83
.6

94
50

2
42

91
.3

44
45

33
60

00
42

00
0

12
97

6.
03

31
1

42
59

.0
01

04
9

42
83

.4
99

73
1

42
59

.8
03

00
3

42
67

.4
34

59
4

33
70

00
42

12
5

12
96

5.
99

92
6

42
45

.2
62

49
3

42
70

.1
38

26
7

42
46

.6
03

67
9

42
54

.0
01

48

33
80

00
42

25
0

13
22

7.
72

70
2

43
29

.7
13

27
9

43
54

.4
12

68
2

43
30

.5
45

68
9

43
38

.2
23

88
3

33
90

00
42

37
5

13
31

6.
71

37
6

43
75

.2
65

07
4

44
00

.7
84

14
6

43
77

.9
22

94
8

43
84

.6
57

38
9

34
00

00
42

50
0

13
27

7.
48

35
5

43
59

.8
28

48
7

43
86

.8
26

09
7

43
64

.9
65

24
6

43
70

.5
39

94
3

34
10

00
42

62
5

13
04

2.
00

82
7

42
80

.9
77

11
7

43
07

.7
16

93
8

42
84

.5
72

64
8

42
91

.0
88

90
1

212

B: Data Tables Anycast Policy Throughput

To
ta

l
M

es
sa

ge
s

P
ay

lo
ad

S
iz

e
(k

iB
)

In
pu

tR
at

e
(b

yt
es

/s
ec

)
O

ut
pu

tA
R

at
e

(b
yt

es
/s

ec
)

O
ut

pu
tB

R
at

e
(b

yt
es

/s
ec

)
S

td
.D

ev
ia

tio
n

(b
yt

es
/s

ec
)

D
el

ta
R

at
e

In
pu

t/
O

ut
pu

t
(b

yt
es

/s
ec

)

34
20

00
42

75
0

12
96

4.
51

48
7

42
55

.9
68

43
3

42
83

.9
50

06
1

42
61

.2
70

70
1

42
67

.0
63

06
5

34
30

00
42

87
5

13
23

7.
91

74
1

43
51

.1
17

52
3

43
77

.3
92

71
43

55
.4

91
58

1
43

61
.3

33
93

8

34
40

00
43

00
0

12
29

2.
33

01
9

40
38

.6
34

20
1

40
62

.5
85

82
2

40
42

.4
97

63
4

40
47

.9
05

88
6

34
50

00
43

12
5

13
19

3.
23

06
6

43
33

.9
17

13
1

43
57

.9
27

38
9

43
38

.5
25

58
7

43
43

.4
56

70
2

34
60

00
43

25
0

13
47

1.
57

19
1

44
14

.4
35

16
5

44
38

.9
73

58
4

44
19

.0
44

02
4

44
24

.1
50

92
4

34
70

00
43

37
5

13
44

8.
02

83
5

44
11

.4
83

58
9

44
34

.5
39

53
4

44
15

.6
12

53
6

44
20

.5
45

22

34
80

00
43

50
0

13
14

7.
05

17
43

24
.9

45
61

2
43

47
.6

07
92

1
43

30
.5

77
39

9
43

34
.3

76
97

7

34
90

00
43

62
5

13
20

1.
25

07
2

43
33

.7
49

43
3

43
55

.9
24

61
5

43
39

.3
46

55
3

43
43

.0
06

86
7

35
00

00
43

75
0

13
46

9.
73

37
6

44
31

.7
70

25
6

44
52

.3
65

68
9

44
34

.9
15

78
7

44
39

.6
83

91
1

35
10

00
43

87
5

13
53

8.
66

38
2

44
51

.8
61

88
44

71
.2

42
65

8
44

54
.1

64
49

5
44

59
.0

89
67

8

35
20

00
44

00
0

13
13

9.
85

10
2

43
27

.2
21

76
2

43
45

.8
37

57
7

43
29

.9
15

59
2

43
34

.3
24

97
7

35
30

00
44

12
5

13
61

5.
32

51
44

74
.8

87
95

2
44

94
.2

23
69

3
44

77
.8

61
04

44
82

.3
24

22
8

35
40

00
44

25
0

13
27

6.
83

00
5

43
68

.6
45

83
3

43
88

.7
96

63
1

43
72

.1
40

13
43

76
.5

27
53

1

35
50

00
44

37
5

13
39

2.
19

66
3

44
01

.5
39

34
4

44
21

.7
92

99
3

44
04

.9
25

07
6

44
09

.4
19

13
8

35
60

00
44

50
0

13
69

4.
33

81
4

44
99

.3
07

30
7

45
20

.6
65

23
3

45
01

.7
30

13
3

45
07

.2
34

22
4

35
70

00
44

62
5

13
24

1.
22

63
2

43
50

.9
41

14
9

43
71

.1
96

90
3

43
53

.0
78

03
2

43
58

.4
05

36
1

35
80

00
44

75
0

13
58

1.
69

57
6

44
67

.1
24

05
9

44
87

.5
66

85
7

44
68

.5
03

85
3

44
74

.3
98

25
6

35
90

00
44

87
5

13
24

9.
88

43
61

.7
56

62
8

43
81

.6
58

12
5

43
62

.8
40

85
9

43
68

.7
51

87
1

36
00

00
45

00
0

13
23

8.
82

28
5

43
53

.5
82

40
6

43
73

.3
78

78
5

43
55

.0
25

66
8

43
60

.6
62

28
6

213

B: Data Tables Anycast Policy Throughput

To
ta

l
M

es
sa

ge
s

P
ay

lo
ad

S
iz

e
(k

iB
)

In
pu

tR
at

e
(b

yt
es

/s
ec

)
O

ut
pu

tA
R

at
e

(b
yt

es
/s

ec
)

O
ut

pu
tB

R
at

e
(b

yt
es

/s
ec

)
S

td
.D

ev
ia

tio
n

(b
yt

es
/s

ec
)

D
el

ta
R

at
e

In
pu

t/
O

ut
pu

t
(b

yt
es

/s
ec

)

36
10

00
45

12
5

13
35

8.
78

48
4

43
92

.9
76

41
4

44
12

.4
02

70
9

43
94

.8
68

97
8

44
00

.0
82

7

36
20

00
45

25
0

13
34

1.
91

78
6

43
93

.2
70

66
44

11
.9

19
57

4
43

96
.6

71
66

1
44

00
.6

20
63

2

36
30

00
45

37
5

13
42

2.
16

61
3

44
12

.6
53

85
2

44
31

.9
28

49
9

44
15

.7
40

23
7

44
20

.1
07

52
9

36
40

00
45

50
0

13
50

4.
87

44
3

44
45

.1
20

14
1

44
64

.1
42

47
7

44
49

.3
90

66
2

44
52

.8
84

42
7

36
50

00
45

62
5

13
34

5.
94

06
8

43
86

.9
26

68
44

05
.2

69
29

5
43

89
.6

89
11

3
43

93
.9

61
69

6

36
60

00
45

75
0

13
32

8.
42

19
7

43
88

.2
90

38
3

44
06

.1
19

56
1

43
90

.7
20

66
3

43
95

.0
43

53
6

36
70

00
45

87
5

13
44

5.
08

90
1

44
21

.4
21

93
44

38
.9

86
24

6
44

23
.2

49
73

4
44

27
.8

85
97

36
80

00
46

00
0

13
35

8.
48

45
5

43
96

.4
17

69
9

44
14

.7
30

10
8

43
99

.5
73

21
2

44
03

.5
73

67
3

36
90

00
46

12
5

13
60

3.
37

67
1

44
73

.6
65

42
1

44
93

.4
68

15
1

44
76

.5
15

08
44

81
.2

16
21

7

37
00

00
46

25
0

13
41

0.
69

49
2

44
15

.2
36

50
9

44
34

.7
01

12
9

44
17

.7
28

64
44

22
.5

55
42

6

37
10

00
46

37
5

12
92

6.
53

33
5

42
59

.1
86

45
2

42
78

.3
62

91
3

42
60

.2
39

35
8

42
65

.9
29

57
4

37
20

00
46

50
0

13
43

0.
38

64
1

44
13

.6
17

93
44

33
.4

75
99

4
44

12
.7

42
64

9
44

19
.9

45
52

4

37
30

00
46

62
5

13
29

0.
67

91
6

43
70

.0
85

68
4

43
88

.6
12

89
5

43
68

.8
63

62
1

43
75

.8
54

06
7

37
40

00
46

75
0

13
32

2.
20

01
5

43
88

.4
29

99
2

44
07

.3
97

11
43

86
.7

06
42

3
43

94
.1

77
84

2

37
50

00
46

87
5

13
34

3.
79

91
4

43
94

.3
68

84
7

44
13

.0
46

48
1

43
91

.1
93

17
1

43
99

.5
36

16
6

37
60

00
47

00
0

13
50

1.
19

48
4

44
46

.7
25

28
5

44
65

.5
51

23
8

44
43

.4
41

12
9

44
51

.9
05

88
4

37
70

00
47

12
5

13
65

8.
68

29
2

44
94

.8
09

65
2

45
13

.8
11

27
2

44
90

.8
89

47
4

44
99

.8
36

79
9

37
80

00
47

25
0

13
76

8.
40

72
3

45
32

.1
49

16
2

45
51

.0
02

33
7

45
28

.3
07

35
9

45
37

.1
52

95
3

37
90

00
47

37
5

13
31

3.
36

77
3

43
87

.0
17

46
7

44
06

.2
04

77
1

43
83

.6
66

00
3

43
92

.2
96

08

214

B: Data Tables Anycast Policy Throughput

To
ta

l
M

es
sa

ge
s

P
ay

lo
ad

S
iz

e
(k

iB
)

In
pu

tR
at

e
(b

yt
es

/s
ec

)
O

ut
pu

tA
R

at
e

(b
yt

es
/s

ec
)

O
ut

pu
tB

R
at

e
(b

yt
es

/s
ec

)
S

td
.D

ev
ia

tio
n

(b
yt

es
/s

ec
)

D
el

ta
R

at
e

In
pu

t/
O

ut
pu

t
(b

yt
es

/s
ec

)

38
00

00
47

50
0

13
29

4.
05

38
4

43
81

.5
78

72
7

43
99

.7
61

64
2

43
76

.5
22

49
7

43
85

.9
54

28
9

38
10

00
47

62
5

13
29

7.
41

14
8

43
72

.9
25

48
3

43
92

.0
71

85
6

43
68

.2
04

70
6

43
77

.7
34

01
5

38
20

00
47

75
0

13
31

0.
37

02
7

43
75

.0
09

25
8

43
92

.9
16

67
1

43
70

.1
51

74
2

43
79

.3
59

22
4

38
30

00
47

87
5

13
44

6.
19

28
8

44
22

.7
83

53
3

44
40

.9
07

58
5

44
17

.4
78

23
6

44
27

.0
56

45
1

38
40

00
48

00
0

14
09

4.
43

89
1

46
38

.3
35

33
2

46
57

.7
55

19
46

32
.8

25
58

5
46

42
.9

72
03

6

38
50

00
48

12
5

13
54

4.
31

03
44

58
.4

48
71

9
44

77
.1

60
54

5
44

52
.1

02
99

3
44

62
.5

70
75

2

38
60

00
48

25
0

13
27

7.
79

36
3

43
73

.3
65

87
7

43
92

.1
80

24
7

43
67

.1
68

16
8

43
77

.5
71

43
1

38
70

00
48

37
5

13
36

3.
22

09
1

44
03

.6
32

90
2

44
21

.8
60

12
6

43
96

.5
81

55
8

44
07

.3
58

19
5

38
80

00
48

50
0

13
37

7.
79

81
9

44
08

.9
15

46
1

44
28

.4
75

59
6

44
03

.8
13

25
7

44
13

.7
34

77
1

38
90

00
48

62
5

13
11

3.
53

25
5

43
11

.1
60

16
1

43
30

.8
42

36
3

43
07

.1
13

99
5

43
16

.3
72

17
3

39
00

00
48

75
0

13
83

5.
08

67
6

45
59

.2
12

52
5

45
79

.4
25

45
54

.2
25

92
3

45
64

.2
87

81
6

39
10

00
48

87
5

13
52

5.
64

42
4

44
51

.4
26

86
44

70
.2

48
74

3
44

45
.9

47
99

9
44

55
.8

74
53

4

39
20

00
49

00
0

13
86

1.
64

44
5

45
60

.2
54

11
3

45
80

.5
62

62
4

45
55

.0
63

28
3

45
65

.2
93

34

39
30

00
49

12
5

13
49

8.
45

50
5

44
37

.0
71

31
5

44
57

.2
97

31
5

44
32

.8
10

21
1

44
42

.3
92

94
7

39
40

00
49

25
0

13
10

2.
94

36
8

43
17

.0
10

08
2

43
35

.2
45

49
6

43
12

.6
51

87
1

43
21

.6
35

81
6

39
50

00
49

37
5

13
48

5.
95

47
4

44
42

.6
42

53
4

44
61

.3
41

67
44

38
.4

52
40

4
44

47
.4

78
86

9

39
60

00
49

50
0

12
99

0.
91

21
4

42
85

.7
12

05
5

43
02

.5
80

83
3

42
81

.4
32

32
4

42
89

.9
08

40
4

39
70

00
49

62
5

13
26

8.
96

36
43

67
.5

73
29

43
84

.0
89

88
1

43
64

.1
32

84
5

43
71

.9
32

00
5

39
80

00
49

75
0

13
39

9.
33

48
2

44
11

.7
22

82
6

44
28

.9
50

47
8

44
08

.6
06

72
6

44
16

.4
26

67
7

215

B: Data Tables Anycast Policy Throughput

To
ta

l
M

es
sa

ge
s

P
ay

lo
ad

S
iz

e
(k

iB
)

In
pu

tR
at

e
(b

yt
es

/s
ec

)
O

ut
pu

tA
R

at
e

(b
yt

es
/s

ec
)

O
ut

pu
tB

R
at

e
(b

yt
es

/s
ec

)
S

td
.D

ev
ia

tio
n

(b
yt

es
/s

ec
)

D
el

ta
R

at
e

In
pu

t/
O

ut
pu

t
(b

yt
es

/s
ec

)

39
90

00
49

87
5

13
13

7.
80

85
43

30
.1

73
25

4
43

46
.9

02
70

6
43

27
.7

45
28

7
43

34
.9

40
41

6

40
00

00
50

00
0

13
34

4.
09

84
6

43
96

.8
72

58
8

44
13

.6
77

92
7

43
94

.3
88

96
9

44
01

.6
46

49
5

40
10

00
50

12
5

13
46

3.
48

61
9

44
31

.4
90

15
6

44
50

.6
18

54
5

44
31

.3
99

38
8

44
37

.8
36

03

40
20

00
50

25
0

13
61

6.
55

58
9

44
87

.5
42

75
2

45
05

.4
05

27
4

44
86

.5
63

93
3

44
93

.1
70

65
3

40
30

00
50

37
5

13
68

3.
34

39
9

45
08

.5
31

40
6

45
27

.1
22

20
8

45
07

.8
24

42
2

45
14

.4
92

67
9

40
40

00
50

50
0

13
70

7.
42

06
45

13
.1

22
29

3
45

31
.9

35
66

3
45

12
.1

80
08

2
45

19
.0

79
34

6

40
50

00
50

62
5

13
16

2.
02

59
4

43
31

.1
42

54
5

43
49

.8
43

45
4

43
30

.4
42

82
2

43
37

.1
42

94

40
60

00
50

75
0

13
05

1.
18

68
2

43
00

.5
50

72
4

43
20

.1
89

31
1

43
00

.6
95

48
7

43
07

.1
45

17
4

40
70

00
50

87
5

13
35

4.
62

98
7

43
98

.1
93

45
5

44
18

.4
52

37
5

43
98

.0
59

95
4

44
04

.9
01

92
8

40
80

00
51

00
0

13
09

7.
63

03
5

43
18

.7
07

3
43

37
.5

56
62

4
43

17
.1

42
20

8
43

24
.4

68
71

1

40
90

00
51

12
5

13
39

8.
81

91
6

44
11

.7
88

63
1

44
31

.9
03

05
1

44
11

.0
89

55
4

44
18

.2
60

41
2

41
00

00
51

25
0

13
10

0.
54

07
7

43
08

.1
25

64
8

43
29

.2
54

07
7

43
09

.5
42

75
2

43
15

.6
40

82
6

41
10

00
51

37
5

13
12

1.
39

92
2

43
20

.9
76

11
5

43
41

.9
87

91
8

43
22

.9
26

44
3

43
28

.6
30

15
9

41
20

00
51

50
0

12
97

7.
84

74
1

42
78

.6
60

78
9

42
98

.6
08

88
5

42
79

.2
35

33
42

85
.5

01
66

8

41
30

00
51

62
5

13
47

6.
55

15
5

44
29

.2
61

40
5

44
49

.8
00

51
8

44
30

.0
40

44
4

44
36

.3
67

45
6

41
40

00
51

75
0

13
37

6.
43

69
1

44
04

.6
31

7
44

26
.4

20
47

4
44

04
.9

42
43

2
44

11
.9

98
20

2

41
50

00
51

87
5

13
66

5.
41

22
9

45
02

.4
38

59
9

45
24

.0
79

09
45

02
.2

28
32

5
45

09
.5

82
00

5

41
60

00
52

00
0

13
22

7.
73

95
1

43
56

.9
53

61
1

43
77

.2
13

00
7

43
56

.9
66

28
7

43
63

.7
10

96
8

41
70

00
52

12
5

13
27

8.
52

60
3

43
70

.9
35

32
7

43
90

.7
19

15
3

43
72

.1
56

33
2

43
77

.9
36

93
7

216

B: Data Tables Anycast Policy Throughput

To
ta

l
M

es
sa

ge
s

P
ay

lo
ad

S
iz

e
(k

iB
)

In
pu

tR
at

e
(b

yt
es

/s
ec

)
O

ut
pu

tA
R

at
e

(b
yt

es
/s

ec
)

O
ut

pu
tB

R
at

e
(b

yt
es

/s
ec

)
S

td
.D

ev
ia

tio
n

(b
yt

es
/s

ec
)

D
el

ta
R

at
e

In
pu

t/
O

ut
pu

t
(b

yt
es

/s
ec

)

41
80

00
52

25
0

13
46

4.
09

87
2

44
35

.7
32

83
7

44
55

.3
22

61
6

44
37

.4
86

09
5

44
42

.8
47

18
3

41
90

00
52

37
5

13
35

9.
34

50
5

44
03

.1
50

74
8

44
22

.2
81

29
7

44
05

.0
48

80
8

44
10

.1
60

28
4

42
00

00
52

50
0

13
71

3.
27

55
2

45
16

.0
18

61
5

45
36

.6
86

90
2

45
19

.1
95

71
7

45
23

.9
67

07
8

42
10

00
52

62
5

13
36

8.
62

99
44

01
.3

08
76

3
44

21
.2

64
65

2
44

03
.6

72
77

3
44

08
.7

48
72

9

42
20

00
52

75
0

13
26

3.
10

13
4

43
70

.1
49

03
3

43
89

.0
75

88
9

43
72

.7
44

42
3

43
77

.3
23

11
5

42
30

00
52

87
5

13
34

0.
56

26
8

43
90

.0
13

76
6

44
09

.9
23

46
1

43
91

.2
55

27
7

43
97

.0
64

16
8

42
40

00
53

00
0

13
38

8.
46

18
44

12
.8

49
14

2
44

33
.1

65
18

9
44

13
.7

68
06

2
44

19
.9

27
46

4

42
50

00
53

12
5

13
63

9.
03

47
44

92
.0

61
26

1
45

13
.4

71
00

3
44

92
.4

26
00

6
44

99
.3

19
42

3

42
60

00
53

25
0

13
50

8.
31

52
7

44
49

.8
54

54
2

44
69

.6
47

64
7

44
49

.4
24

01
9

44
56

.3
08

73
6

42
70

00
53

37
5

13
50

3.
81

28
44

50
.5

92
53

6
44

73
.0

36
13

3
44

51
.5

09
30

6
44

58
.3

79
32

5

42
80

00
53

50
0

13
32

0.
95

31
5

43
77

.3
57

68
1

43
98

.2
89

52
43

77
.5

50
07

4
43

84
.3

99
09

2

42
90

00
53

62
5

12
86

3.
90

72
7

42
31

.8
21

32
8

42
53

.1
25

74
4

42
32

.4
11

16
42

39
.1

19
41

1

43
00

00
53

75
0

12
85

5.
17

11
9

42
17

.4
08

20
2

42
39

.7
90

66
4

42
19

.2
97

15
4

42
25

.4
98

67
3

43
10

00
53

87
5

13
34

1.
50

74
6

43
92

.7
86

44
3

44
16

.9
95

34
2

43
95

.4
07

29
2

44
01

.7
29

69
2

43
20

00
54

00
0

12
76

9.
43

50
8

41
99

.4
62

58
3

42
22

.8
22

72
9

42
01

.7
48

80
1

42
08

.0
11

37
1

43
30

00
54

12
5

13
00

6.
45

26
4

42
78

.0
39

32
5

43
01

.3
40

50
5

42
80

.5
98

19
5

42
86

.6
59

34
2

43
40

00
54

25
0

13
03

0.
84

83
1

42
79

.4
89

70
5

43
03

.7
82

23
3

42
81

.9
32

93
3

42
88

.4
01

62
4

43
50

00
54

37
5

11
94

3.
25

31
4

35
27

.9
73

49
5

35
57

.2
13

85
3

35
70

.6
54

60
8

35
51

.9
47

31
9

43
60

00
54

50
0

13
03

9.
01

13
5

42
82

.2
08

02
4

43
07

.1
29

54
2

42
85

.7
79

63
1

42
91

.7
05

73
2

217

B: Data Tables Anycast Policy Throughput

To
ta

l
M

es
sa

ge
s

P
ay

lo
ad

S
iz

e
(k

iB
)

In
pu

tR
at

e
(b

yt
es

/s
ec

)
O

ut
pu

tA
R

at
e

(b
yt

es
/s

ec
)

O
ut

pu
tB

R
at

e
(b

yt
es

/s
ec

)
S

td
.D

ev
ia

tio
n

(b
yt

es
/s

ec
)

D
el

ta
R

at
e

In
pu

t/
O

ut
pu

t
(b

yt
es

/s
ec

)

43
70

00
54

62
5

13
41

2.
91

08
8

44
15

.9
98

36
5

44
40

.4
33

98
3

44
17

.5
12

38
8

44
24

.6
48

24
5

43
80

00
54

75
0

12
99

0.
72

42
76

.4
49

56
7

43
01

.4
59

69
8

42
79

.0
46

98
2

42
85

.6
52

08
2

43
90

00
54

87
5

13
30

4.
84

01
6

43
79

.5
72

97
5

44
05

.8
01

83
7

43
82

.4
30

30
5

43
89

.2
68

37
2

44
00

00
55

00
0

12
89

4.
48

62
9

42
40

.6
64

49
3

42
66

.4
64

44
1

42
44

.2
84

18
3

42
50

.4
71

03
9

44
10

00
55

12
5

12
87

6.
17

03
1

42
31

.1
99

55
9

42
58

.0
19

10
5

42
34

.4
67

93
5

42
41

.2
28

86
6

44
20

00
55

25
0

13
04

7.
15

08
7

42
85

.9
63

02
3

43
14

.3
08

73
42

90
.7

95
27

3
42

97
.0

22
34

2

44
30

00
55

37
5

13
44

7.
46

17
1

44
18

.9
13

49
3

44
48

.6
14

72
6

44
22

.9
24

99
6

44
30

.1
51

07
2

44
40

00
55

50
0

12
85

9.
43

27
3

42
33

.9
43

51
5

42
61

.9
16

22
6

42
36

.1
17

17
5

42
43

.9
92

30
5

44
50

00
55

62
5

12
44

7.
23

07
4

40
96

.0
81

27
41

22
.6

18
46

1
40

97
.5

38
99

6
41

05
.4

12
90

9

44
60

00
55

75
0

11
39

6.
45

72
2

31
67

.8
14

04
2

31
94

.3
85

73
3

31
81

.0
29

52
6

31
81

.0
76

43
4

44
70

00
55

87
5

12
51

7.
32

26
3

41
15

.2
15

12
5

41
41

.9
44

99
1

41
16

.3
83

94
6

41
24

.5
14

68
7

44
80

00
56

00
0

12
83

8.
17

26
6

42
24

.2
83

36
9

42
52

.0
48

11
8

42
24

.8
41

59
1

42
33

.7
24

35
9

44
90

00
56

12
5

12
62

3.
72

72
9

41
48

.8
82

07
2

41
76

.1
35

73
6

41
49

.6
31

8
41

58
.2

16
53

6

45
00

00
56

25
0

12
90

1.
23

37
5

42
40

.3
53

15
9

42
69

.6
55

08
3

42
42

.6
08

14
2

42
50

.8
72

12
8

45
10

00
56

37
5

13
38

9.
94

95
6

43
85

.5
93

40
8

44
15

.8
62

64
8

43
87

.2
39

17
1

43
96

.2
31

74
2

45
20

00
56

50
0

13
33

2.
86

68
8

43
86

.2
79

15
9

44
16

.9
36

96
5

43
89

.6
27

67
3

43
97

.6
14

59
9

45
30

00
56

62
5

12
40

1.
76

42
6

38
31

.0
90

52
1

38
57

.5
33

58
3

38
59

.6
40

14
5

38
49

.4
21

41
6

45
40

00
56

75
0

13
40

0.
09

21
6

44
05

.2
75

39
8

44
37

.4
88

13
4

44
08

.5
05

25
3

44
17

.0
89

59
5

45
50

00
56

87
5

12
96

9.
16

37
8

42
73

.8
07

53
7

43
04

.3
95

9
42

76
.6

18
84

42
84

.9
40

75
9

218

B: Data Tables Anycast Policy Throughput

To
ta

l
M

es
sa

ge
s

P
ay

lo
ad

S
iz

e
(k

iB
)

In
pu

tR
at

e
(b

yt
es

/s
ec

)
O

ut
pu

tA
R

at
e

(b
yt

es
/s

ec
)

O
ut

pu
tB

R
at

e
(b

yt
es

/s
ec

)
S

td
.D

ev
ia

tio
n

(b
yt

es
/s

ec
)

D
el

ta
R

at
e

In
pu

t/
O

ut
pu

t
(b

yt
es

/s
ec

)

45
60

00
57

00
0

13
27

2.
08

46
43

71
.6

94
84

8
44

03
.1

44
45

3
43

74
.9

83
48

4
43

83
.2

74
26

2

45
70

00
57

12
5

13
61

3.
40

81
1

44
79

.6
00

33
6

45
11

.6
43

6
44

82
.4

27
69

8
44

91
.2

23
87

8

45
80

00
57

25
0

13
30

6.
44

50
2

43
74

.0
50

01
7

44
05

.2
84

44
1

43
77

.2
21

53
3

43
85

.5
18

66
4

45
90

00
57

37
5

13
35

9.
29

75
2

43
94

.7
54

45
1

44
26

.2
28

04
6

43
98

.2
53

43
2

44
06

.4
11

97
6

46
00

00
57

50
0

13
55

4.
30

46
4

44
65

.4
70

92
44

97
.7

00
30

1
44

69
.0

78
01

3
44

77
.4

16
41

1

46
10

00
57

62
5

13
35

4.
62

92
8

43
96

.4
00

66
9

44
27

.4
82

47
7

44
00

.0
10

26
1

44
07

.9
64

46
9

46
20

00
57

75
0

13
73

4.
57

68
1

45
22

.4
32

10
8

45
55

.1
86

15
7

45
26

.6
80

74
3

45
34

.7
66

33
6

46
30

00
57

87
5

13
25

9.
23

81
5

43
67

.6
05

36
8

43
99

.2
57

75
1

43
71

.7
86

56
6

43
79

.5
49

89
5

46
40

00
58

00
0

13
44

8.
10

71
3

44
27

.5
72

91
8

44
60

.4
46

61
1

44
32

.0
69

68
7

44
40

.0
29

73
9

46
50

00
58

12
5

13
34

3.
46

94
43

86
.3

92
38

1
44

18
.5

97
71

8
43

90
.6

59
97

1
43

98
.5

50
02

3

46
60

00
58

25
0

13
41

0.
44

01
44

12
.1

12
9

44
42

.3
34

29
5

44
14

.6
19

44
7

44
23

.0
22

21
4

46
70

00
58

37
5

13
18

9.
52

40
3

43
46

.2
88

59
2

43
76

.4
78

16
43

49
.4

80
66

8
43

57
.4

15
80

7

46
80

00
58

50
0

13
25

8.
37

47
9

43
68

.6
78

49
5

43
99

.2
36

6
43

72
.2

66
87

6
43

80
.0

60
65

7

46
90

00
58

62
5

13
09

9.
97

72
1

43
13

.3
03

37
5

43
42

.8
45

27
2

43
17

.7
41

09
3

43
24

.6
29

91
3

47
00

00
58

75
0

13
46

4.
29

41
2

44
28

.2
22

88
44

58
.1

19
53

5
44

32
.9

04
05

9
44

39
.7

48
82

5

47
10

00
58

87
5

13
54

5.
64

15
7

44
64

.1
35

73
7

44
93

.6
61

43
4

44
68

.1
96

44
8

44
75

.3
31

20
6

47
20

00
59

00
0

13
28

2.
30

19
43

77
.2

08
06

8
44

05
.8

79
80

9
43

81
.6

77
21

9
43

88
.2

55
03

2

47
30

00
59

12
5

13
43

9.
37

69
3

44
26

.8
87

44
7

44
55

.1
39

88
3

44
31

.2
65

72
6

44
37

.7
64

35
2

47
40

00
59

25
0

13
24

7.
58

55
43

64
.9

43
59

8
43

94
.1

97
03

2
43

69
.9

59
95

43
76

.3
66

86

219

B: Data Tables Anycast Policy Throughput

To
ta

l
M

es
sa

ge
s

P
ay

lo
ad

S
iz

e
(k

iB
)

In
pu

tR
at

e
(b

yt
es

/s
ec

)
O

ut
pu

tA
R

at
e

(b
yt

es
/s

ec
)

O
ut

pu
tB

R
at

e
(b

yt
es

/s
ec

)
S

td
.D

ev
ia

tio
n

(b
yt

es
/s

ec
)

D
el

ta
R

at
e

In
pu

t/
O

ut
pu

t
(b

yt
es

/s
ec

)

47
50

00
59

37
5

13
33

3.
86

93
1

43
92

.3
45

07
3

44
22

.4
51

44
6

43
98

.5
55

21
9

44
04

.4
50

57
9

47
60

00
59

50
0

13
49

3.
31

41
5

44
42

.3
13

73
4

44
72

.4
29

11
9

44
47

.6
46

09
9

44
54

.1
29

65
1

47
70

00
59

62
5

13
63

0.
62

69
3

44
88

.9
09

36
5

45
20

.1
55

98
4

44
94

.4
30

70
7

45
01

.1
65

35
2

47
80

00
59

75
0

13
23

0.
63

26
2

43
52

.7
87

93
5

43
83

.5
17

73
43

58
.1

71
63

8
43

64
.8

25
76

8

47
90

00
59

87
5

13
59

2.
26

70
6

44
78

.2
28

81
4

45
09

.6
11

34
8

44
84

.2
62

99
7

44
90

.7
01

05
3

48
00

00
60

00
0

13
25

5.
87

81
3

43
67

.9
87

16
4

43
99

.2
87

91
5

43
74

.7
83

63
2

43
80

.6
86

23
7

48
10

00
60

12
5

13
34

4.
61

05
43

91
.2

80
70

4
44

20
.9

81
70

4
43

97
.1

60
96

7
44

03
.1

41
12

5

48
20

00
60

25
0

13
56

4.
04

67
44

68
.0

50
82

2
44

98
.0

01
42

3
44

73
.3

75
37

4
44

79
.8

09
20

6

48
30

00
60

37
5

12
92

7.
39

94
3

42
52

.5
09

42
7

42
79

.9
05

85
9

42
57

.3
24

64
8

42
63

.2
46

64
5

48
40

00
60

50
0

13
53

7.
59

05
9

44
57

.1
11

49
4

44
84

.5
44

62
1

44
60

.9
38

99
44

67
.5

31
70

2

48
50

00
60

62
5

13
64

0.
83

08
5

44
96

.5
42

75
1

45
25

.2
83

71
5

44
99

.8
11

22
45

07
.2

12
56

2

48
60

00
60

75
0

13
83

0.
15

73
6

45
57

.5
86

74
2

45
86

.5
81

83
45

61
.1

91
65

2
45

68
.4

53
40

8

48
70

00
60

87
5

13
54

8.
85

07
6

44
65

.2
90

19
9

44
94

.7
38

87
9

44
69

.2
94

48
3

44
76

.4
41

18
7

48
80

00
61

00
0

13
72

6.
93

32
7

45
21

.7
32

21
8

45
51

.1
02

72
9

45
24

.8
99

38
2

45
32

.5
78

11

48
90

00
61

12
5

13
32

7.
87

42
7

43
92

.3
76

58
3

44
20

.8
80

37
1

43
96

.4
02

25
5

44
03

.2
19

73
6

49
00

00
61

25
0

13
52

2.
95

27
3

44
47

.9
33

00
5

44
77

.6
86

92
44

52
.6

68
07

6
44

59
.4

29
33

4

49
10

00
61

37
5

13
26

7.
81

68
43

71
.4

03
04

4
44

00
.8

82
64

4
43

76
.4

25
47

8
43

82
.9

03
72

2

49
20

00
61

50
0

13
77

6.
00

56
8

45
37

.1
87

88
4

45
67

.6
27

66
7

45
42

.0
81

67
9

45
48

.9
65

74
3

49
30

00
61

62
5

13
98

8.
47

08
3

46
09

.0
09

98
4

46
40

.1
43

54
5

46
12

.8
56

47
7

46
20

.6
70

00
2

220

B: Data Tables Anycast Policy Throughput

To
ta

l
M

es
sa

ge
s

P
ay

lo
ad

S
iz

e
(k

iB
)

In
pu

tR
at

e
(b

yt
es

/s
ec

)
O

ut
pu

tA
R

at
e

(b
yt

es
/s

ec
)

O
ut

pu
tB

R
at

e
(b

yt
es

/s
ec

)
S

td
.D

ev
ia

tio
n

(b
yt

es
/s

ec
)

D
el

ta
R

at
e

In
pu

t/
O

ut
pu

t
(b

yt
es

/s
ec

)

49
40

00
61

75
0

13
52

3.
53

51
9

44
58

.7
82

29
5

44
88

.7
41

07
6

44
62

.0
44

44
2

44
69

.8
55

93
8

49
50

00
61

87
5

13
48

8.
63

30
1

44
45

.6
13

84
44

74
.8

03
46

3
44

48
.2

11
17

4
44

56
.2

09
49

2

49
60

00
62

00
0

13
44

7.
90

18
7

44
26

.2
95

18
5

44
55

.4
33

19
2

44
29

.1
63

57
9

44
36

.9
63

98
5

49
70

00
62

12
5

13
86

6.
25

54
7

45
67

.1
88

58
3

45
97

.2
85

03
8

45
69

.9
25

93
9

45
78

.1
33

18
7

49
80

00
62

25
0

13
34

6.
96

76
1

44
00

.8
93

92
1

44
30

.0
02

25
1

44
03

.9
92

70
4

44
11

.6
29

62
5

49
90

00
62

37
5

13
53

1.
09

70
5

44
58

.0
27

84
1

44
87

.5
84

23
5

44
61

.6
59

22
5

44
69

.0
90

43
4

50
00

00
62

50
0

13
69

4.
33

72
4

45
12

.3
25

69
6

45
42

.3
80

42
7

45
16

.4
84

76
3

45
23

.7
30

29
5

50
10

00
62

62
5

13
63

1.
47

90
9

44
95

.0
12

34
6

45
24

.4
65

35
7

44
97

.9
65

26
7

45
05

.8
14

32
3

50
20

00
62

75
0

13
61

2.
23

92
6

44
87

.8
87

16
4

45
17

.2
47

02
9

44
91

.2
88

08
2

44
98

.8
07

42
5

50
30

00
62

87
5

13
96

6.
02

32
5

46
01

.5
18

86
1

46
32

.7
38

20
6

46
05

.1
72

63
8

46
13

.1
43

23
5

50
40

00
63

00
0

13
50

2.
98

07
8

44
46

.0
51

14
1

44
76

.5
69

49
2

44
49

.9
83

34
1

44
57

.5
34

65
8

50
50

00
63

12
5

13
52

5.
35

40
8

44
59

.2
36

86
3

44
90

.0
32

15
2

44
63

.2
53

2
44

70
.8

40
73

8

50
60

00
63

25
0

13
34

2.
38

54
1

43
90

.0
04

01
5

44
19

.7
20

00
8

43
92

.8
54

40
7

44
00

.8
59

47
7

50
70

00
63

37
5

13
46

9.
85

26
4

44
39

.4
23

35
7

44
69

.5
52

83
44

42
.9

32
80

1
44

50
.6

36
32

9

50
80

00
63

50
0

13
39

6.
16

31
44

18
.0

55
59

7
44

48
.4

29
59

7
44

21
.3

63
82

9
44

29
.2

83
00

8

50
90

00
63

62
5

13
73

3.
63

52
5

45
19

.5
43

47
6

45
51

.1
64

94
5

45
23

.4
62

68
9

45
31

.3
90

37

51
00

00
63

75
0

13
66

6.
67

03
9

45
00

.3
79

04
5

45
31

.5
78

47
1

45
04

.1
29

15
7

45
12

.0
28

89
1

51
10

00
63

87
5

13
51

4.
61

35
8

44
54

.5
59

96
5

44
84

.9
23

36
44

58
.0

63
40

2
44

65
.8

48
90

9

51
20

00
64

00
0

13
36

8.
39

85
7

44
08

.0
70

23
5

44
37

.7
70

00
4

44
10

.5
37

31
2

44
18

.7
92

51
7

221

B: Data Tables Anycast Policy Throughput

To
ta

l
M

es
sa

ge
s

P
ay

lo
ad

S
iz

e
(k

iB
)

In
pu

tR
at

e
(b

yt
es

/s
ec

)
O

ut
pu

tA
R

at
e

(b
yt

es
/s

ec
)

O
ut

pu
tB

R
at

e
(b

yt
es

/s
ec

)
S

td
.D

ev
ia

tio
n

(b
yt

es
/s

ec
)

D
el

ta
R

at
e

In
pu

t/
O

ut
pu

t
(b

yt
es

/s
ec

)

51
30

00
64

12
5

13
38

7.
84

71
9

44
10

.5
06

03
2

44
40

.4
89

17
1

44
12

.6
35

82
2

44
21

.2
10

34
2

222

	Abstract
	Declaration
	Acknowledgements
	Terminology
	Publications
	Dealing With Big Data Outside Of The Cloud: GPU Accelerated Sort
	Keeping Properties with the Data CL-MetaHeaders - An Open Specification
	LoRa for the Internet of Things
	It Bends but Would it Break? Topological Analysis of BGP Infrastructures in Europe
	Shapeclip: Towards rapid prototyping with shape-changing displays for designers

	Contents
	Introduction
	The Change
	Networks, External and Internal
	Users and Usage
	Operating Systems and Resources
	Research Questions
	Structure of this Thesis

	Related Work
	The GATE Toolkit
	Use Cases
	Modular NLP Tools
	Build and Workflow Systems

	Middleware
	Hardware Improvements
	Changes in the Platform
	Zero-copy Processing

	Asymmetric Multiprocessing
	Networking
	Network Representation
	Hybrids and Overlays
	Flow Marshalling

	Scaling and Migration
	Security
	Small Devices and IoT Networks
	Management
	Kernel Design
	The `Tesselation' Design
	The `Exokernel' Design
	Implementation - Barrelfish
	Implementation - Corey
	Implementation - Fabric
	Implementation - Helios

	Summary

	Analysis
	Automation and Flow
	Connectivity
	Linear Chains to Graphs
	Practicalities

	Technical Challenges
	Directionality and Buffering
	External Buffers and System Buffers
	Multipath IPC
	Lock-Free Data Structures
	Summary

	Map and Reduce
	GPU Case Study - GPU Sort
	Issues with GPU Hardware
	Expermiental Methodology
	Results
	Discussion and Conclusions

	CPU Bugs - Meltdown and Spectre
	Summary

	Design
	Outline
	Design Concepts
	Asymmetric Network Links
	Unidirectional Network Links

	Architecture
	Stream-based approaches to Data flows
	Router
	Nodes

	Interaction with other Linux Processes
	Tool Interoperability
	Structured vs. Unstructured Data

	Interactions
	Bus
	Map
	Reduce
	Mux (or `Multiplex')
	DeMux (or `Demultiplex')

	Address Range
	CIDR Compatible Notation

	Summary

	Implementation
	Overall Architecture
	The `Router'
	Routers All The Way Down
	`Nodes' and Binary Wrappers

	Networking
	Asynchronous Messaging
	Protocol
	Address Lookup Mechanisms
	Forwarding and Policies

	Binaries
	GraphRouter
	Graph

	Summary and Future Developments

	Evaluation
	Test Machine Configuration
	General Methodology
	Throughput Limits
	Custom Tooling
	ArgTest
	pv from pv4science

	Standard Linux Pipes
	Local Sockets
	Forwarding Policies
	Broadcast
	AnyCast
	RoundRobin

	Runtime Operation
	`Bus' Operations
	Flow Map and Reduce

	Limitations and Extensions
	Build System Integration
	Transport Layer
	Multiple Host or Nested Hosting

	Summary

	Conclusion
	Novelty
	Utility
	Significant Contributions
	Limitations and Further Work
	Building as a Kernel Module
	Networking and Protocol
	Integration With a Zero-Copy Framework
	Remote Host and Nested Router Support
	Workflow Tool Integration

	Bibliography
	List of Figures
	Data Tables
	Hardware Specification of Test Environment
	Unix Pipe Transfer Speeds for Increasing Payload Length
	Broadcast Policy Throughput
	RoundRobin Policy Throughput
	Anycast Policy Throughput

